Advertisement

The European Physical Journal Special Topics

, Volume 223, Issue 3, pp 439–454 | Cite as

Heterogeneous crystallization of hard and soft spheres near flat and curved walls

  • K. Sandomirski
  • S. Walta
  • J. Dubbert
  • E. Allahyarov
  • A.B. Schofield
  • H. Löwen
  • W. Richtering
  • S.U. EgelhaafEmail author
Regular Article
Part of the following topical collections:
  1. Heterogenous Nucleation and Microstructure Formation: Steps Towards a System and Scale Bridging Understanding

Abstract

Crystallization represents a long-standing problem in statistical physics and is of great relevance for many practical and industrial applications. It often occurs in the presence of container walls or impurities, which are usually unavoidable or might even be desirable to facilitate crystallization by exploiting heterogeneous nucleation. Heterogeneous nucleation relies on a seed. Here we discuss the role of the seed and concentrate on a very generic situation, namely crystallization of hard and soft colloidal spheres in the presence of flat or curved hard walls. Curvature serves as a simple means to introduce a tunable mismatch between the seed-induced crystal lattice and the thermodynamically-favoured lattice. The mismatch induces distortions and elastic stress, which accumulate while the crystallite grows. This has an important consequence: once the crystallite reaches a critical size, it detaches from the seed allowing it to relax. The relaxed crystal continues to grow in the bulk, but crystallization ceases before reaching the seed, which now represents an impurity. Therefore, while seeds favour nucleation, any mismatch, like the seed curvature or an incommensurate structure, induces unfavourable distortions and can lead to the detachment of the crystallite. An additional mechanism to relax distortions is available to soft spheres, which can exploit their interaction potential and possibly deform. The different multi-step processes have been investigated by confocal microscopy, which provides particle-level information, and compared to computer simulations and theoretical results.

Keywords

Crystallization European Physical Journal Special Topic Hard Sphere Crystal Growth Rate Crystalline Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Emmerich, H. Löwen, R. Wittkowski, T. Gruhn, G.I. Tóth, G. Tegze, L. Gránásy, Adv. Phys. 61, 665 (2012)ADSGoogle Scholar
  2. 2.
    H. Emmerich, K. Binder, B. Nestler, Phil. Mag. Lett. 87, 791 (2007)Google Scholar
  3. 3.
    D.G. McCartney, Int. Mater. Rev. 34, 247 (1989)Google Scholar
  4. 4.
    A.L. Greer, A.M. Bunn, A. Tronche, P.V. Evans, D.J. Bristow, Acta Mater. 48, 2823 (2000)Google Scholar
  5. 5.
    K.F. Kelton, A.L. Greer, D.M. Herlach, D. Holland-Moritz, MRS Bull. 29, 940 (2004)Google Scholar
  6. 6.
    P. Wette, I. Klassen, D. Holland-Moritz, T. Palberg, S.V. Roth, D.M. Herlach, Phys. Rev. E 79, 010501 (2009)ADSGoogle Scholar
  7. 7.
    D.M. Herlach, I. Klassen, P. Wette, D. Holland-Moritz, J. Phys.: Condens. Matter 22, 153101 (2010)ADSGoogle Scholar
  8. 8.
    A. van Blaaderen, K.P. Velikov, J.P. Hoogenboom, D.L.J. Vossen, A. Yethiraj, R. Dullens, T. van Dillen, A. Polman, Photonic Crystals and Light Localization in the 21th Century, edited by C.M. Soukoulis (Kluwer Academic Publishers, 2001)Google Scholar
  9. 9.
    N.V. Dziomkina, G.J. Vancso, Soft Matter 1, 265 (2005)ADSGoogle Scholar
  10. 10.
    U. Dusek, G.P. Frank, L. Hildebrandt, J. Curtius, J. Schneider, S. Walter, D. Chand, F. Drewnick, S. Hings, D. Jung, S. Borrmann, M.O. Andreae, Science 312, 1375 (2006)ADSGoogle Scholar
  11. 11.
    A. Pande, J. Pande, N. Asherie, A. Lomakin, O. Ogun, J. King, G.B. Benedek, Proc. Natl. Acad. Sci. (US) 98, 6116 (2001)ADSGoogle Scholar
  12. 12.
    J.P.K. Doye, W.C.K. Poon, Curr. Opin. Coll. Interface Sci. 11, 40 (2006)Google Scholar
  13. 13.
    M.C. Wiener, Methods 34, 364 (2004)Google Scholar
  14. 14.
    E.H. Snell, J.R. Helliwell, Rep. Prog. Phys. 68, 799 (2005)ADSGoogle Scholar
  15. 15.
    R.P. Sear, J. Phys.: Condens. Matter 19, 033101 (2007)ADSGoogle Scholar
  16. 16.
    M. Ataka, S. Tanaka, Biopol. 25, 337 (1986)Google Scholar
  17. 17.
    S. Tanaka, M. Yamamoto, K. Kawashima, K. Ito, R. Hayakawa, M. Ataka, J. Cryst. Growth 168, 44 (1996)ADSGoogle Scholar
  18. 18.
    S. Tanaka, M. Yamamoto, K. Ito, R. Hayakawa, M. Ataka, Phys. Rev. E 56, R67 (1997)ADSGoogle Scholar
  19. 19.
    S. Tanaka, K. Ito, R. Hayakawa, M. Ataka, J. Chem. Phys. 111, 10330 (1999)ADSGoogle Scholar
  20. 20.
    S. Tanaka, M. Ataka, J. Chem. Phys. 117, 3504 (2002)ADSGoogle Scholar
  21. 21.
    S. Tanaka, S.U. Egelhaaf, W.C.K. Poon, Phys. Rev. Lett. 92, 128102 (2004)ADSGoogle Scholar
  22. 22.
    W.C.K. Poon, S.U. Egelhaaf, P.A. Beales, A. Salonen, L. Lawyer, J. Phys.: Condens. Matter 12, L569 (2000)ADSGoogle Scholar
  23. 23.
    H. Sedgwick, K. Kroy, A. Salonen, M.B. Robertson, S.U. Egelhaaf, W.C.K. Poon, Eur. Phys. J. E 16, 77 (2005)Google Scholar
  24. 24.
    H. Sedgwick, J.E. Cameron, W.C.K. Poon, S.U. Egelhaaf, J. Chem. Phys. 127, 125102 (2007)ADSGoogle Scholar
  25. 25.
    C. Goegelein, D. Wagner, F. Cardinaux, G. Nägele, S.U. Egelhaaf, J. Chem. Phys. 136, 015102 (2012)ADSGoogle Scholar
  26. 26.
    D.S. Tsekova, D.R. Williams, J.Y.Y. Heng, Chem. Eng. Sci. 77, 201 (2012)Google Scholar
  27. 27.
    S. Hachisu, Y. Kobayashi, A. Kose, J. Coll. Interface Sci. 42, 342 (1973)Google Scholar
  28. 28.
    J. Yamanaka, M. Murai, Y. Iwayama, M. Yonese, K. Ito, T. Sawada, J. Am. Chem. Soc. 126, 7156 (2004)Google Scholar
  29. 29.
    P. Schall, I. Cohen, D.A. Weitz, F. Spaepen, Science 305, 1944 (2004)ADSGoogle Scholar
  30. 30.
    P.N. Pusey, W. van Megen, Nature 320, 340 (1986)ADSGoogle Scholar
  31. 31.
    S. Derber, T. Palberg, K. Schätzel, J. Vogel, Physica A 235, 204 (1997)ADSGoogle Scholar
  32. 32.
    Z. Cheng, P.M. Chaikin, J. Zhu, W.B. Russel, W.V. Meyer, Phys. Rev. Lett. 88, 015501 (2002)ADSGoogle Scholar
  33. 33.
    V.C. Martelozzo, A. Schofield, W.C.K. Poon, P.N. Pusey, Phys. Rev. E 66, 021408 (2002)ADSGoogle Scholar
  34. 34.
    L. Assoud, F. Ebert, P. Keim, R. Messina, G. Maret, H. Löwen, Phys. Rev. Lett. 102, 238301 (2009)ADSGoogle Scholar
  35. 35.
    R.P.A. Dullens, D.G.A.L. Aarts, W.K. Kegel, Phys. Rev. Lett. 97, 228301 (2006)ADSGoogle Scholar
  36. 36.
    U. Gasser, E.R. Weeks, A. Schofield, P.N. Pusey, D.A. Weitz, Science 292, 258 (2001)ADSGoogle Scholar
  37. 37.
    U. Gasser, J. Phys.: Condens. Matter 21, 203101 (2009)ADSGoogle Scholar
  38. 38.
    H.J. Schöpe, G. Bryant, W. van Megen, Phys. Rev. E 74, 060401 (2006)ADSGoogle Scholar
  39. 39.
    S. Iacopini, T. Palberg, H.J. Schöpe, Phys. Rev. E 79, 010601 (2009)ADSGoogle Scholar
  40. 40.
    T. Palberg, Curr. Opin. Coll. Interface Sci. 2, 607 (1997)Google Scholar
  41. 41.
    T. Palberg, J. Phys.: Condens. Matter 11, R323 (1999)ADSGoogle Scholar
  42. 42.
    J.L. Harland, W. van Megen, Phys. Rev. E 55, 3054 (1997)ADSGoogle Scholar
  43. 43.
    H.J. Schöpe, G. Bryant, W. van Megen, Phys. Rev. Lett. 96, 175701 (2006)ADSGoogle Scholar
  44. 44.
    H.J. Schöpe, G. Bryant, W. van Megen, J. Chem. Phys. 127, 084505 (2007)ADSGoogle Scholar
  45. 45.
    B.J. Ackerson, K. Schätzel, Phys. Rev. E 52, 6448 (1995)ADSGoogle Scholar
  46. 46.
    S. Auer, D. Frenkel, Nature 409, 1020 (2001)ADSGoogle Scholar
  47. 47.
    S. Auer, D. Frenkel, J. Phys.: Condens. Matter 14, 7667 (2002)ADSGoogle Scholar
  48. 48.
    S. Auer, W.C.K. Poon, D. Frenkel, Phys. Rev. E 67, 020401 (2003)ADSGoogle Scholar
  49. 49.
    S. Auer, D. Frenkel, J. Chem. Phys. 120, 3015 (2004)ADSGoogle Scholar
  50. 50.
    S. Auer, D. Frenkel, Ann. Rev. Phys. Chem. 55, 333 (2004)ADSGoogle Scholar
  51. 51.
    S. Auer, D. Frenkel, Adv. Polym. Sci. 173, 149 (2005)Google Scholar
  52. 52.
    P.R. ten Wolde, M.J. Ruiz-Montero, D. Frenkel, Phys. Rev. Lett. 75, 2714 (1995)ADSGoogle Scholar
  53. 53.
    P.R. ten Wolde, M.J. Ruiz-Montero, D. Frenkel, J. Chem. Phys. 104, 9932 (1996)ADSGoogle Scholar
  54. 54.
    T. Schilling, H.J. Schöpe, M. Oettel, G. Opletal, I. Snook, Phys. Rev. Lett. 105, 025701 (2010)ADSGoogle Scholar
  55. 55.
    H. Shintani, H. Tanaka, Nature Phys. 2, 200 (2006)ADSGoogle Scholar
  56. 56.
    P.N. Pusey, E. Zaccarelli, C. Valeriani, E. Sanz, W.C.K. Poon, M.E. Cates, Phil. Trans. R. Soc. A 367, 4993 (2009)ADSGoogle Scholar
  57. 57.
    E. Zaccarelli, C. Valeriani, E. Sanz, W.C.K. Poon, M.E. Cates, P.N. Pusey, Phys. Rev. Lett. 103, 135704 (2009)ADSGoogle Scholar
  58. 58.
    T. Zykova-Timan, J. Horbach, K. Binder, J. Chem. Phys. 133, 014705 (2010)ADSGoogle Scholar
  59. 59.
    E. Sanz, C. Valeriani, E. Zaccarelli, W.C.K. Poon, P.N. Pusey, M.E. Cates, Phys. Rev. Lett. 106, 215701 (2011)ADSGoogle Scholar
  60. 60.
    C. Valeriani, E. Sanz, E. Zaccarelli, W.C.K. Poon, M.E. Cates, P.N. Pusey, J. Phys.: Condens. Matter 23, 194117 (2011)ADSGoogle Scholar
  61. 61.
    T. Schilling, S. Dorosz, H.J. Schöpe, G. Opletal, J. Phys.: Condens. Matter 23, 194120 (2011)ADSGoogle Scholar
  62. 62.
    R. Becker, W. Döring, Ann. Physik 24, 719 (1935)ADSzbMATHGoogle Scholar
  63. 63.
    D. Turnbull, J.C. Fisher, J. Chem. Phys. 17, 71 (1949)ADSGoogle Scholar
  64. 64.
    N.M. Dixit, C.F. Zukoski, Phys. Rev. E 64, 041604 (2001)ADSGoogle Scholar
  65. 65.
    N.M. Dixit, C.F. Zukoski (2002) Phys. Rev. E 66, 051602ADSGoogle Scholar
  66. 66.
    A. Härtel, M. Oettel, R.E. Rozas, S.U. Egelhaaf, J. Horbach, H. Löwen, Phys. Rev. Lett. 108, 226101 (2012)ADSGoogle Scholar
  67. 67.
    D.W. Oxtoby, Liquids, Freezing and Glass Transition, edited by J.P. Hansen, D. Levesque, J. Zinn-Justin, Les Houches 1989 Session LI (North Holland, Amsterdam, 1991)Google Scholar
  68. 68.
    D. Turnbull, J. Chem. Phys. 18, 198 (1950)ADSGoogle Scholar
  69. 69.
    N.H. Fletcher, J. Chem. Phys. 29, 572 (1958)ADSGoogle Scholar
  70. 70.
    G. Navascués, P. Tarazona, J. Chem. Phys. 75, 2441 (1981)ADSGoogle Scholar
  71. 71.
    M. Franke, A. Lederer, H.J. Schöpe, Soft Matter 7, 11267 (2011)ADSGoogle Scholar
  72. 72.
    M. Heni, H. Löwen, Phys. Rev. E 60, 7057 (1999)ADSGoogle Scholar
  73. 73.
    S. Auer, D. Frenkel, Phys. Rev. Lett. 91, 015703 (2003)ADSGoogle Scholar
  74. 74.
    D.J. Courtemanche, F. van Swol, Phys. Rev. Lett. 69, 2078 (1992)ADSGoogle Scholar
  75. 75.
    R.P. Sear, Phys. Rev. E 70, 021605 (2004)ADSGoogle Scholar
  76. 76.
    R.P. Sear, J. Phys.: Condens. Matter 17, 3997 (2004)ADSGoogle Scholar
  77. 77.
    R.P.A. Dullens, W.K. Kegel, Phys. Rev. Lett. 92, 195702 (2004)ADSGoogle Scholar
  78. 78.
    R.P.A. Dullens, M.C.D. Mourad, D.G.A.L. Aarts, J.P. Hoogenboom, W.K. Kegel, Phys. Rev. Lett. 96, 028304 (2006)ADSGoogle Scholar
  79. 79.
    A. Cacciuto, S. Auer, D. Frenkel, Nature 428, 404 (2004)ADSGoogle Scholar
  80. 80.
    K. Sandomirski, E. Allahyarov, H. Löwen, S.U. Egelhaaf (in preparation)Google Scholar
  81. 81.
    E. Allahyarov, K. Sandomirski, S.U. Egelhaaf, H. Löwen (in preparation)Google Scholar
  82. 82.
    D. Winter, P. Virnau, K. Binder, Phys. Rev. Lett. 103, 225703 (2009)ADSGoogle Scholar
  83. 83.
    H.J. Schöpe, P. Wette, Phys. Rev. E 83, 051405 (2011)ADSGoogle Scholar
  84. 84.
    D. Deb, A. Winkler, M.H. Yamani, M. Oettel, P. Virnau, K. Binder, J. Chem. Phys. 134, 214706 (2011)ADSGoogle Scholar
  85. 85.
    A. Engelbrecht, R. Meneses, H.J. Schöpe, Soft Matter 7, 5685 (2011)ADSGoogle Scholar
  86. 86.
    T. Palberg, M.R. Maaroufi, A. Stipp, H.J. Schöpe, J. Chem. Phys. 137, 094906 (2012)ADSGoogle Scholar
  87. 87.
    P. Wette, A. Engelbrecht, R. Salh, I. Klassen, D. Menke, D.M. Herlach, S.V. Roth, H.J. Schöpe, J. Phys.: Condens. Matter 21, 464115 (2009)ADSGoogle Scholar
  88. 88.
    K. Sandomirski, E. Allahyarov, H. Löwen, S. U. Egelhaaf, Soft Matter 7, 8050 (2011)ADSGoogle Scholar
  89. 89.
    F. Ziese, G. Maret, U. Gasser, J. Phys.: Condens. Matter 25, 375105 (2013)Google Scholar
  90. 90.
    A. Engelbrecht, H.J. Schöpe, Soft Matter 8, 11034 (2012)ADSGoogle Scholar
  91. 91.
    S. Walta, K. Sandomirski, W. Richtering, S.U. Egelhaaf (in preparation)Google Scholar
  92. 92.
    K. Sandomirski, J. Dubbert, S. Walta, W. Richtering, S.U. Egelhaaf (in preparation)Google Scholar
  93. 93.
    M. Hermes, E.C.M. Vermolen, M.E. Leunissen, D.L.J. Vossen, P.D.J. van Oostrum, M. Dijkstra, A. van Blaaderen, Soft Matter 7, 4623 (2011)ADSGoogle Scholar
  94. 94.
    G. Kahl, H. Löwen, J. Phys.: Condens. Matter 21, 464101 (2009)ADSGoogle Scholar
  95. 95.
    S. van Teeffelen, C.N. Likos, H. Löwen, Phys. Rev. Lett. 100, 108302 (2008)ADSGoogle Scholar
  96. 96.
    J.P. Hoogenboom, A.K. van Langen-Suurling, J. Romijn, A. van Blaaderen, Phys. Rev. E 69, 051602 (2004)ADSGoogle Scholar
  97. 97.
    K.H. Lin, J.C. Crocker, V. Prasad, A. Schofield, D.A. Weitz, T.C. Lubensky, A.G. Yodh, Phys. Rev. Lett. 85, 1770 (2000)ADSGoogle Scholar
  98. 98.
    M. Heni, H. Löwen, Phys. Rev. Lett. 85, 3668 (2000)ADSGoogle Scholar
  99. 99.
    W.S. Xu, Z.Y. Sun, L.J. An, J. Chem. Phys. 132, 144506 (2010)ADSGoogle Scholar
  100. 100.
    L. Assoud, R. Messina, H. Löwen, Mol. Phys. 109, 1385 (2011)ADSGoogle Scholar
  101. 101.
    G.I. Toth, G. Tegze, T. Pusztai, L. Granasy, Phys. Rev. Lett. 108, 025502 (2012)ADSGoogle Scholar
  102. 102.
    A. Cacciuto, D. Frenkel, Phys. Rev. E 72, 041604 (2005)ADSGoogle Scholar
  103. 103.
    D. Frenkel, Nature 443, 641 (2006)ADSGoogle Scholar
  104. 104.
    S. Dorosz, T. Schilling, J. Chem. Phys. 136, 044702 (2012)ADSGoogle Scholar
  105. 105.
    V.W.A. de Villeneuve, R.P.A. Dullens, D.G.A.L. Aarts, E. Groeneveld, J.H. Scherff, W.K. Kegel, H.N.W. Lekkerkerker, Science 309, 1231 (2005)ADSGoogle Scholar
  106. 106.
    V.W.A. de Villeneuve, D. Verboekend, R.P.A. Dullens, D.G.A.L. Aarts, W.K. Kegel, H.N.W. Lekkerkerker, J. Phys.: Condens. Matter 17, S3371 (2005)ADSGoogle Scholar
  107. 107.
    R.P.A. Dullens, V.W.A. de Villeneuve, M.C.D. Mourad, A.V. Petukhov, W.K. Kegel, Eur. Phys. J. Appl. Phys. 44, 21 (2008)ADSGoogle Scholar
  108. 108.
    V.W.A. de Villeneuve, L. Derendorp, D. Verboekend, E.C.M. Vermolen, W.K. Kegel, H.N.W. Lekkerkerker, R.P.A. Dullens, Soft Matter 5, 2448 (2009)ADSGoogle Scholar
  109. 109.
    A. Engelbrecht, H.J. Schöpe, Cryst. Growth Design 10, 2258 (2010)Google Scholar
  110. 110.
    S. Martin, G. Bryant, W. van Megen, Phys. Rev. E 71, 021404 (2005)ADSGoogle Scholar
  111. 111.
    P.N. Pusey, Liquids, Freezing and Glass Transition, edited by J.P. Hansen, D. Levesque, J. Zinn-Justin (Elsevier Science Publishers, 1991), p. 763Google Scholar
  112. 112.
    W. Poon, Science 304, 830 (2004)Google Scholar
  113. 113.
    P.N. Pusey, Science 309, 1198 (2005)Google Scholar
  114. 114.
    J.C. Crocker, D.G. Grier, J. Colloid Interface Sci. 179, 298 (1996)Google Scholar
  115. 115.
    M.C. Jenkins, S.U. Egelhaaf, Adv. Colloid Interface Sci. 136, 65 (2008)Google Scholar
  116. 116.
    R.P.A. Dullens, D.G.A.L. Aarts, W.K. Kegel, H.N.W. Lekkerkerker, Mol. Phys. 103, 3195 (2005)ADSGoogle Scholar
  117. 117.
    R.P.A. Dullens, D.G.A.L. Aarts, W.K. Kegel, Proc. Natl. Acad. Sci. (US) 103, 529 (2006)ADSGoogle Scholar
  118. 118.
    P.R. ten Wolde, M.J. Ruiz-Montero, D. Frenkel, Faraday Disc. 104, 93 (1996)ADSGoogle Scholar
  119. 119.
    P.J. Steinhardt, D.R. Nelson, M. Ronchetti, Phys. Rev. B 28, 784 (1983)ADSGoogle Scholar
  120. 120.
    A. Yethiraj, A. van Blaaderen, Nature 421, 513 (2003)ADSGoogle Scholar
  121. 121.
    C.P. Royall, W.C.K. Poon, E.R. Weeks, Soft Matter 9, 17 (2013)ADSGoogle Scholar
  122. 122.
    W.C.K. Poon, E.R. Weeks, C.P. Royall, Soft Matter 8, 21 (2012)ADSGoogle Scholar
  123. 123.
    M. Stieger, J.S. Pedersen, P. Lindner, W. Richtering, J. Chem. Phys. 120, 6197 (2004)ADSGoogle Scholar
  124. 124.
    M. Stieger, J.S. Pedersen, P. Lindner, W. Richtering, Langmuir 20, 7283 (2004)Google Scholar
  125. 125.
    S. Nayak, L.A. Lyon, Angew. Chem. Int. Ed. 44, 7686 (2005)Google Scholar
  126. 126.
    D. Gottwald, C.N. Likos, G. Kahl, H. Löwen, Phys. Rev. Lett. 92, 068301 (2004)ADSGoogle Scholar
  127. 127.
    A.N.S. John, V. Breedveld, L.A. Lyon, J. Phys. Chem. B 111, 7796 (2007)Google Scholar
  128. 128.
    P.S. Mohanty, W. Richtering, J. Phys. Chem. B 112, 14692 (2008)Google Scholar
  129. 129.
    J. Riest, P. Mohanty, P. Schurtenberger, C.N. Likos, Z. Phys. Chem. 226, 711 (2012)Google Scholar
  130. 130.
    M. Muluneh, J. Sprakel, H.M. Wyss, J. Mattsson, D.A. Weitz, J. Phys.: Condens. Matter 23, 505101 (2011)Google Scholar
  131. 131.
    D. Paloli, P.S. Mohanty, J.J. Crassous, E. Zaccarelli, P. Schurtenberger, Soft Matter 9, 3000 (2013)ADSGoogle Scholar
  132. 132.
    B. Sierra-Martin, A. Fernandez-Nieves, Soft Matter 8, 4141 (2012)ADSGoogle Scholar
  133. 133.
    H. Senff, W. Richtering, J. Chem. Phys. 111, 1705 (1999)ADSGoogle Scholar
  134. 134.
    C.B. Müller, W. Richtering, Coll. Polym. Sci. 286, 1215 (2008)Google Scholar
  135. 135.
    S. Hoefl, L. Zitzler, T. Hellweg, S. Herminghaus, F. Mugele, Polymer 48, 245 (2007)Google Scholar
  136. 136.
    M. Dijkstra, R. van Roij, J. Phys.: Condens. Matter 17, S3507 (2005)ADSGoogle Scholar
  137. 137.
    B.B. Laird, R.L. Davidchack, J. Phys. Chem. C 111, 15952 (2007)Google Scholar
  138. 138.
    R. Benjamin, J. Horbach, J. Chem. Phys. 137, 044707 (2012)ADSGoogle Scholar
  139. 139.
    R. Ohnesorge, H. Löwen, H. Wagner, Phys. Rev. E 50, 4801 (1994)ADSGoogle Scholar
  140. 140.
    J. Hernández-Guzmán, E.R. Weeks, Proc. Natl. Acad. Sci. (US) 106, 15198 (2009)ADSGoogle Scholar
  141. 141.
    R.L. Davidchack, B.B. Laird, J. Chem. Phys. 108, 9452 (1998)ADSGoogle Scholar
  142. 142.
    M. Oettel, S. Dorosz, M. Berghoff, B. Nestler, T. Schilling, Phys. Rev. E 86, 021404 (2012)ADSGoogle Scholar
  143. 143.
    K. Yoshizawa, T. Okuzono, T. Koga, T. Taniji, J. Yamanaka, Langmuir 27, 13420 (2011)Google Scholar
  144. 144.
    S.M. Ilett, A. Orrock, W.C.K. Poon, P.N. Pusey, Phys. Rev. E 51, 1344 (1995)ADSGoogle Scholar
  145. 145.
    A. Cacciuto, D. Frenkel, J. Phys. Chem. B 109, 6587 (2005)Google Scholar
  146. 146.
    M. Pühse, M. Keerl, C. Scherzinger, W. Richtering, R. Winter, Polymer 51, 3653 (2010)Google Scholar
  147. 147.
    S. Grobelny, C. Hofmann, M. Erlkamp, F.A. Plamper, W. Richtering, R. Winter, Soft Matter 9, 5862 (2013)ADSGoogle Scholar

Copyright information

© EDP Sciences and Springer 2014

Authors and Affiliations

  • K. Sandomirski
    • 1
  • S. Walta
    • 1
    • 2
  • J. Dubbert
    • 2
  • E. Allahyarov
    • 3
    • 4
  • A.B. Schofield
    • 5
  • H. Löwen
    • 3
  • W. Richtering
    • 2
  • S.U. Egelhaaf
    • 1
    Email author
  1. 1.Condensed Matter Physics Laboratory, Heinrich Heine UniversityDüsseldorfGermany
  2. 2.Institute of Physical Chemistry, RWTH Aachen UniversityAachenGermany
  3. 3.Institute for Theoretical Physics II: Soft Matter, Heinrich Heine UniversityDüsseldorfGermany
  4. 4.Joint Institute for High Temperatures, Russian Academy of Sciences (IVTAN)MoscowRussia
  5. 5.School of Physics & Astronomy, The University of EdinburghEdinburghUK

Personalised recommendations