Advertisement

The European Physical Journal Special Topics

, Volume 223, Issue 3, pp 421–438 | Cite as

Solid phase properties and crystallization in simple model systems

  • F. Turci
  • T. Schilling
  • M.H. Yamani
  • M. Oettel
Review
Part of the following topical collections:
  1. Heterogenous Nucleation and Microstructure Formation: Steps Towards a System and Scale Bridging Understanding

Abstract

We review theoretical and simulational approaches to the description of equilibrium bulk crystal and interface properties as well as to the nonequilibrium processes of homogeneous and heterogeneous crystal nucleation for the simple model systems of hard spheres and Lennard–Jones particles. For the equilibrium properties of bulk and interfaces, density functional theories employing fundamental measure functionals prove to be a precise and versatile tool, as exemplified with a closer analysis of the hard sphere crystal–liquid interface. A detailed understanding of the dynamic process of nucleation in these model systems nevertheless still relies on simulational approaches. We review bulk nucleation and nucleation at structured walls and examine in closer detail the influence of walls with variable strength on nucleation in the Lennard–Jones fluid. We find that a planar crystalline substrate induces the growth of a crystalline film for a large range of lattice spacings and interaction potentials. Only a strongly incommensurate substrate and a very weakly attractive substrate potential lead to crystal growth with a non–zero contact angle.

Keywords

Interfacial Tension European Physical Journal Special Topic Hard Sphere Coexistence Region Classical Nucleation Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Tarazona, J.A. Cuesta, Y. Martinez-Raton, Theory and Simulation of Hard-Sphere Fluids and Related Systems, edited by A. Mulero, Lect. Notes Phys. 753 (Springer, Berlin Heidelberg 2008), p. 247Google Scholar
  2. 2.
    R. Roth, J. Phys.: Condens. Matter 22, 063102 (2010)ADSGoogle Scholar
  3. 3.
    M. Oettel, S. Görig, A. Härtel, H. Löwen, M. Radu, T. Schilling, Phys. Rev. E 82, 051404 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    J.F. Lutsko, Phys. Rev. E 74, 021121 (2006)ADSCrossRefMathSciNetGoogle Scholar
  5. 5.
    M.H. Yamani, M. Oettel, Phys. Rev. E 88, 022301 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    V.B. Warshavsky, X. Song, J. Chem. Phys. 129, 034506 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    J. Lutsko, Phys. Rev. E 74, 021603 (2006)ADSCrossRefMathSciNetGoogle Scholar
  8. 8.
    V.B. Warshavsky, X. Song, Phys. Rev. E 73, 031110 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    R. Evans, Adv. Phys. 28, 143 (1979)ADSCrossRefGoogle Scholar
  10. 10.
    T.V. Ramakrishnan, M. Yussouff, Phys. Rev. B 19, 2775 (1979)ADSCrossRefGoogle Scholar
  11. 11.
    M. Carta, D. Pini, A. Parola, L Reatto, J. Phys.: Condens. Matter 24, 284106 (2012)Google Scholar
  12. 12.
    V. Heinonen, A. Mijailovic, C.V. Achim, T. Ala-Nissila, R.E. Rozas, J. Horbach, H. Löwen, J. Chem. Phys. 138, 044705 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    S.L. Singh, A.S. Bharadwaj, Y. Singh, Phys. Rev. E 83, 051506 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    A.S. Bharadwaj, S.L. Singh, Y. Singh, Phys. Rev. E 88, 022112 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    D. Gillespie, W. Nonner, R.S. Eisenberg, Phys. Rev. E 68, 031503 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    W.A. Curtin, N.W. Ashcroft, Phys. Rev. Lett 56, 2775 (1986)ADSCrossRefGoogle Scholar
  17. 17.
    X. Wang, J. Mi, C. Zhong, J. Chem. Phys. 138, 164704 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    A. Jaatinen, T. Ala–Nissila, J. Phys.: Condens. Matter 22, 205402 (2010)ADSGoogle Scholar
  19. 19.
    H. Emmerich, H. Löwen, R. Wittkowski, T. Gruhn, G.I. Toth, G. Tegze, L. Granasy, Adv. Phys. 61, 665 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    K.-A. Wu, A. Karma, Phys. Rev. B 76, 184107 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    A. Jaatinen, C.V. Achim, K.R. Elder, T. Ala-Nissila, Phys. Rev. E 80, 031602 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    G.I. Toth, T. Pusztai, G. Tegze, G. Toth, L. Granasy, Phys. Rev. Lett. 107, 175702 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    M. Oettel, S. Dorosz, M. Berghoff, B. Nestler, T. Schilling, Phys. Rev. E 86, 021404 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    T. Zykova-Timan, J. Horbach, K. Binder, J. Chem. Phys. 133, 014705 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    R. Ohnesorge, H. Löwen, H. Wagner, Phys. Rev. E 50, 4801 (1994)ADSCrossRefGoogle Scholar
  26. 26.
    W.A. Curtin, Phys. Rev. B 39, 6775 (1989)ADSCrossRefGoogle Scholar
  27. 27.
    A. Härtel, M. Oettel, R.E. Rozas, S.U. Egelhaaf, J. Horbach, H. Löwen, Phys. Rev. Lett. 108, 226101 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    R.L. Davidchack, J. Chem. Phys. 133, 234701 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    L.A. Fernandez, V. Martin-Mayor, B. Seoane, P. Verrocchio, Phys. Rev. Lett. 108, 165701 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    M. Oettel, J. Phys.: Condens. Matter 24, 464124 (2012)ADSGoogle Scholar
  31. 31.
    V.B. Warshavsky, X. Song, J. Phys.: Condens. Matter 22, 364112 (2010)Google Scholar
  32. 32.
    V.B. Warshavsky, X. Song, Phys. Rev. E 86, 031602 (2012)ADSCrossRefGoogle Scholar
  33. 33.
    J.J. Hoyt, M. Asta, T. Haxhimali, A. Karma, R.E. Napolitano, R. Trivedi, B.B. Laird, J.R. Morris, MRS Bull. 29, 935 (2004)CrossRefGoogle Scholar
  34. 34.
    B.B. Laird, J. Chem. Phys. 115, 2887 (2001)ADSCrossRefGoogle Scholar
  35. 35.
    D.M. Herlach, I. Klassen, P. Wette, D. Holland–Moritz, J. Phys.: Condens. Matter 22, 153101 (2010)ADSGoogle Scholar
  36. 36.
    D.W. Oxtoby, Acc. Chem. Res. 31, 91 (1997)CrossRefGoogle Scholar
  37. 37.
    K. Schätzel, B.J. Ackerson, Phys. Rev. E 48, 3766 (1993)ADSCrossRefGoogle Scholar
  38. 38.
    Y.M. He, B.J. Ackerson, W. van Megen, S.M. Underwood, K. Schätzel, Phys. Rev. E 54, 5286 (1996)ADSCrossRefGoogle Scholar
  39. 39.
    J.L. Harland, W. van Megen, Phys. Rev. E 55, 3054 (1997)ADSCrossRefGoogle Scholar
  40. 40.
    S. Auer, D. Frenkel, Nature 409, 1020 (2001)ADSCrossRefGoogle Scholar
  41. 41.
    S. Iacopini, T. Palberg, H.J. Schöpe, J. Chem. Physics 130, 084502 (2009)ADSCrossRefGoogle Scholar
  42. 42.
    L. Filion, M. Hermes, R. Ni, M. Dijkstra, J. Chem. Phys. 133, 244115 (2010)ADSCrossRefGoogle Scholar
  43. 43.
    T. Schilling, H.J. Schöpe, M. Oettel, G. Opletal, I. Snook, Phys. Rev. Lett. 105, 025701 (2010)ADSCrossRefGoogle Scholar
  44. 44.
    T. Schilling, S. Dorosz, H.J. Schöpe, G. Opletal, J. Phys.: Condens. Matter 23, 194120 (2011)ADSGoogle Scholar
  45. 45.
    J. Russo, H. Tanaka, Scientific Reports 2 (2012)Google Scholar
  46. 46.
    F. Trudu, D. Donadio, M. Parinello, Phys. Rev. Lett. 97, 105701 (2006)ADSCrossRefGoogle Scholar
  47. 47.
    M. Radu, Ph.D. thesis, University of Luxembourg, Luxembourg, 2013Google Scholar
  48. 48.
    D. Moroni, P.R. ten Wolde, P.G. Bolhuis, Phys. Rev. Lett. 94, 235703 (2005)ADSCrossRefGoogle Scholar
  49. 49.
    H. Wang, H. Gould, W. Klein, Phys. Rev. E 76, 031604 (2007)ADSCrossRefGoogle Scholar
  50. 50.
    L.J. Peng, J.R. Morris, Y.C. Lo, Phys. Rev. B 78, 012201 (2008)ADSCrossRefGoogle Scholar
  51. 51.
    S.E.M. Lundrigan, I. Saika-Voivod, J. Chem. Phys. 131, 104503 (2009)ADSCrossRefGoogle Scholar
  52. 52.
    V.G. Baidakov, A.O. Tipeev, K.S. Bobrov, G.V. Ionov, J. Chem. Phys. 132, 234505 (2010)ADSCrossRefGoogle Scholar
  53. 53.
    L.J. Peng, J.R. Morris, R.S. Aga, J. Chem. Phys. 133, 084505 (2010)ADSCrossRefGoogle Scholar
  54. 54.
    V.G. Baidakov, A.O. Tipeev, J. Chem. Phys. 136, 074510 (2012)ADSCrossRefGoogle Scholar
  55. 55.
    S. Prestipino, A. Laio, E. Tosatti, Phys. Rev. Lett. 108, 225701 (2012)ADSCrossRefGoogle Scholar
  56. 56.
    D. Turnbull, J. Chem. Phys. 18, 198 (1950)ADSCrossRefGoogle Scholar
  57. 57.
    H.J.H. Schöpe, P.P. Wette, Phys. Rev. E 83, 051405 (2011)ADSCrossRefGoogle Scholar
  58. 58.
    V.W.A. de Villeneuve, D. Verboekend, R.P.A. Dullens, D.G.A.L. Aarts, W.K. Kegel, H.N.W. Lekkerkerker, J. Phys.: Condens. Matter 17, S3371 (2005)ADSGoogle Scholar
  59. 59.
    A. Cacciuto, S. Auer, D. Frenkel, Nature 428, 404 (2004)ADSCrossRefGoogle Scholar
  60. 60.
    S. Jungblut, C. Dellago, Phys. Rev. E 87, 012305 (2013)ADSCrossRefGoogle Scholar
  61. 61.
    J.P. Hoogenboom, P. Vergeer, A. van Blaaderen, J. Chem. Phys. 119, 3371 (2003)ADSCrossRefGoogle Scholar
  62. 62.
    K. Sandomirski, E. Allahyarov, H. Löwen, S.U. Egelhaaf, Soft Matter 7, 8050 (2011)ADSCrossRefGoogle Scholar
  63. 63.
    M.M. Dijkstra, Phys. Rev. Lett. 93, 108303 (2004)ADSCrossRefGoogle Scholar
  64. 64.
    I.I. Volkov, M.M. Cieplak, J.J. Koplik, J.R.J. Banavar, Phys. Rev. E 66, 061401 (2002)ADSCrossRefGoogle Scholar
  65. 65.
    A. Heymann, A. Stipp, C. Sinn, T. Palberg, J. Coll. Interface Science 207, 9 (1998)CrossRefGoogle Scholar
  66. 66.
    S.S. Auer, D.D. Frenkel, Phys. Rev. Lett. 91, 015703 (2003)ADSCrossRefGoogle Scholar
  67. 67.
    A. Esztermann, H. Löwen, J. Phys.: Condens. Matter 17, S429 (2005)ADSGoogle Scholar
  68. 68.
    A. Fortini, M. Dijkstra, J. Phys.: Condens. Matter 18, L371 (2006)ADSGoogle Scholar
  69. 69.
    N.A. García, R.A. Register, D.A. Vega, L.R. Gómez, Phys. Rev. E 88, 012306 (2013)ADSCrossRefGoogle Scholar
  70. 70.
    F. Ziese, G. Maret, U. Gasser, J. Phys.: Condens. Matter 25, 375105 (2013)Google Scholar
  71. 71.
    G. Kahl, H. Löwen, J. Phys.: Condens. Matter 21, 464101 (2009)ADSGoogle Scholar
  72. 72.
    H.M.H. Harreis, M.M. Schmidt, H.H. Löwen, Phys. Rev. E 65, 041602 (2002)ADSCrossRefGoogle Scholar
  73. 73.
    M. Hermes, E.C.M. Vermolen, M.E. Leunissen, D.L.J. Vossen, P.D.J. van Oostrum, M. Dijkstra, A. van Blaaderen, Soft Matter 7, 4623 (2011)ADSCrossRefGoogle Scholar
  74. 74.
    P. Scheidler, W.W. Kob, K. Binder, J. Phys. Chem. B 108, 6673 (2004)CrossRefGoogle Scholar
  75. 75.
    L. Berthier, W.W. Kob, Phys. Rev. E 85, 11102 (2012)ADSCrossRefGoogle Scholar
  76. 76.
    W.-S. Xu, Z.-Y. Sun, L.-J. An, J. Chem. Phys. 132, 144506 (2010)ADSCrossRefGoogle Scholar
  77. 77.
    G.I. Tóth, G. Tegze, T. Pusztai, L. Gránásy, Phys. Rev. Lett. 108, 025502 (2012)ADSCrossRefGoogle Scholar
  78. 78.
    T. Neuhaus, M. Schmiedeberg, H. Löwen, New J. Phys. 15, 073013 (2013)ADSCrossRefGoogle Scholar
  79. 79.
    S. Dorosz, T. Schilling, J. Chem. Phys. 136, 044702 (2012)ADSCrossRefGoogle Scholar
  80. 80.
    K. Binder, Phys. Rev. A 29, 341 (1984)ADSCrossRefGoogle Scholar
  81. 81.
    H.J. Schöpe, Presentation at the “CECAM Workshop on Interface Effects in Crystallization” (2013)Google Scholar
  82. 82.
    W. Lechner, C. Dellago, J. Chem. Phys. 129, 114707 (2008)ADSCrossRefGoogle Scholar
  83. 83.
    E.A. Mastny, J.J. de Pablo, J. Chem. Phys. 127, 104504 (2007)ADSCrossRefGoogle Scholar
  84. 84.
    A.Y. Kuksin, G.E. Norman, V.V. Stegailov, High Temp. 45, 37 (2007)CrossRefGoogle Scholar
  85. 85.
    A. Ahmed, R.J. Sadus, Phys. Rev. E 80, 061101 (2009)ADSCrossRefGoogle Scholar
  86. 86.
    K. Meier, A. Laesecke, S. Kabelac, J. Chem. Phys. 121, 9526 (2004)ADSCrossRefGoogle Scholar
  87. 87.
    N. Gribova, A. Arnold, T. Schilling, C. Holm, J. Chem. Phys. 135, 054514 (2011)ADSCrossRefGoogle Scholar
  88. 88.
    P. Tarazona, Phys. Rev. Lett. 84, 694 (2000)ADSCrossRefGoogle Scholar
  89. 89.
    Y. Rosenfeld, Phys. Rev. Lett. 63, 980 (1989)ADSCrossRefGoogle Scholar
  90. 90.
    R. Roth, R. Evans, A. Lang, G. Kahl, J. Phys.: Condens. Matter 14, 12063 (2002)ADSGoogle Scholar
  91. 91.
    Y.-X. Yu, J. Wu, J. Chem. Phys. 117, 10156 (2002)ADSCrossRefGoogle Scholar
  92. 92.
    H. Hansen–Goos, R. Roth, J. Phys.: Condens. Matter 18, 8413 (2006)ADSGoogle Scholar
  93. 93.
    P.-M. König, R. Roth, K. Mecke, Phys. Rev. Lett. 93, 160601 (2004)CrossRefGoogle Scholar
  94. 94.
    P. Tarazona, Y. Rosenfeld, Phys. Rev. E(R) 55, 4873 (1997)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2014

Authors and Affiliations

  • F. Turci
    • 1
  • T. Schilling
    • 1
  • M.H. Yamani
    • 2
  • M. Oettel
    • 2
  1. 1.Université du Luxembourg, Theory of Soft Condensed MatterLuxembourgLuxembourg
  2. 2.Institut für Angewandte Physik, Universität TübingenTübingenGermany

Personalised recommendations