Advertisement

The European Physical Journal Special Topics

, Volume 223, Issue 3, pp 409–419 | Cite as

Scale-bridging phase-field simulations of microstructure responses on nucleation in metals and colloids

  • M. Berghoff
  • B. Nestler
Review
Part of the following topical collections:
  1. Heterogenous Nucleation and Microstructure Formation: Steps Towards a System and Scale Bridging Understanding

Abstract

In the present studies we investigate the connection between atomistic simulation methods, i.e. molecular dynamics (MD) and phase-field crystal (PFC), to the mesoscopic phase-field methods (PFM). While the first describes the evolution of a system on the basis of motion equations of particles the second uses a Cahn–Hilliard type equation to described an atomic density field and the third grounds on the evolution of continuous local order parameter field. The first aim is to point out the ability of the mesoscopic phase-field method to make predictions of growth velocity at the nanoscopic length scale. Therefore the isothermal growth of a spherical crystalline cluster embedded in a melt is considered. We also show simulation techniques that enable to computationally bridge from the atomistic up to the mesoscopic scale. We use a PFM to simulate symmetric thermal dendrites started at an early stage of solidification related to nucleation. These techniques allow to simulate three dimensional dendrites from the state of nuclei (≈50 Å) converted from MD up to a size of some μm where ternary side-arms start to grow.

Keywords

Molecular Dynamic European Physical Journal Special Topic Microstructure Formation Mesoscopic Scale Molecular Dynamic Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Provatas, M. Greenwood, B. Athreya, N. Goldenfeld, J. Dantzig, Int. J. Modern Phys. B 19, 4525 (2005)ADSCrossRefGoogle Scholar
  2. 2.
    N. Provatas, J.A. Dantzig, B. Athreya, P. Chan, P. Stefanovic, N. Goldenfeld, K.R. Elder, JOM J. Minerals, Metals Mater. Soc. 59, 83 (2007)CrossRefGoogle Scholar
  3. 3.
    J.J. Hoyt, B. Sadigh, M. Asta, S.M. Foiles, Acta Mater. 47, 3181 (1999)CrossRefGoogle Scholar
  4. 4.
    J.J. Hoyt, M. Asta, A. Karma, Mater. Sci. Eng. R 41, 121 (2003)CrossRefGoogle Scholar
  5. 5.
    P.F. Tupper, M. Grant, EPL 81, 40007 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    K. Kadau, T.C. Germann, P.S. Lomdahl, Int. J. Modern Phys. C 17, 1755 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    D. Frenkel, B. Smit, Understanding molecular simulation: from algorithms to applications (Academic Press, 2002)Google Scholar
  8. 8.
    M.P. Allen, D.J. Tildesley, Computer simulation of liquids (Oxford University Press, 1989)Google Scholar
  9. 9.
    A.R. Leach, Molecular modelling: principles and applications (Pearson Education, 2001)Google Scholar
  10. 10.
    Y. Mishin, M. Asta, J. Li, Acta Mater. 58, 1117 (2010)CrossRefGoogle Scholar
  11. 11.
    K.R. Elder, M. Grant, Phys. Rev. E 70, 51605 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    K.R. Elder, N. Provatas, J. Berry, P. Stefanovic, M. Grant, Phys. Rev. B 75, 64107 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    A. Jaatinen, C.V. Achim, K.R. Elder, T. Ala-Nissila, Phys. Rev. E 80, 031602 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    M. Greenwood, J. Rottler, N. Provatas, Phys. Rev. E 83, 031601 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    G.I. Tóth, G. Tegze, T. Pusztai, L. Gránásy, Phys. Rev. Lett. 108, 025502 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    K.A. Wu, A. Adland, A. Karma, Arxiv preprint [arXiv:1001.1349] (2010)
  17. 17.
    L.Q. Chen, Ann. Rev. Mater. Res. 32, 113 (2002)CrossRefGoogle Scholar
  18. 18.
    W.J. Boettinger, J.A. Warren, C. Beckermann, A. Karma, Ann. Rev. Mater. Res. 32, 163 (2002)CrossRefGoogle Scholar
  19. 19.
    I. Steinbach, Modell. Simul. Mater. Sci. Eng. 17, 073001 (2009)ADSCrossRefMathSciNetGoogle Scholar
  20. 20.
    R. Kobayashi, Phys. D: Nonlinear Phenom. 63, 410 (1993)ADSCrossRefzbMATHGoogle Scholar
  21. 21.
    J.A. Warren, W.J. Boettinger, Acta Metall. Mater. 43, 689 (1995)CrossRefGoogle Scholar
  22. 22.
    B. Nestler, H. Garcke, B. Stinner, Phys. Rev. E 71, 041609 (2005)ADSCrossRefGoogle Scholar
  23. 23.
    B. Nestler, A.A. Wheeler, Physica D: Nonlinear Phenom. 138, 114 (2000)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    R. Folch, M. Plapp, Phys. Rev. E 72, 011602 (2005)ADSCrossRefMathSciNetGoogle Scholar
  25. 25.
    J. Eiken, B. Böttger, I. Steinbach, Phys. Rev. E 73, 066122 (2006)ADSCrossRefGoogle Scholar
  26. 26.
    A. Choudhury, B. Nestler, Phys. Rev. E 85, 021602 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    N. Moelans, B. Blanpain, P. Wollants, Calphad 32, 268 (2008)CrossRefGoogle Scholar
  28. 28.
    T. Takaki, Y. Hisakuni, T. Hirouchi, A. Yamanaka, Y. Tomita, Comput. Mater. Sci. 45, 881 (2009)CrossRefGoogle Scholar
  29. 29.
    L. Gránásy, T. Pusztai, J.A. Warren, J. Phys.: Cond. Matter 16, R1205 (2004)ADSGoogle Scholar
  30. 30.
    R.E. Rozas, J. Horbach (submitted)Google Scholar
  31. 31.
    S.M. Foiles, Phys. Rev. B 32, 3409 (1985)ADSCrossRefGoogle Scholar
  32. 32.
    T. Zykova-Timan, R.E. Rozas, J. Horbach, K. Binder, J. Phys.: Cond. Matter 21, 464102 (2009)ADSGoogle Scholar
  33. 33.
    R.E. Rozas, J. Horbach, Europhys. Lett. 93, 26006 (2011)ADSCrossRefGoogle Scholar
  34. 34.
    M. Berghoff, M. Selzer, B. Nestler, Scient. World J. 2013, 564272 (2013)Google Scholar
  35. 35.
    A. Karma, W.J. Rappel, Phys. Rev. E 53, 3017 (1996)ADSCrossRefGoogle Scholar
  36. 36.
    M. Berghoff, M. Selzer, A. Choudhury, B. Nestler, J. Comput. Meth. Sci. Eng. 13, 441 (2013)Google Scholar
  37. 37.
    M. Cheng, J.A. Warren, J. Comput. Phys. 227, 6241 (2008)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  38. 38.
    K.A. Wu, A. Karma, Phys. Rev. B 76, 184107 (2007)ADSCrossRefGoogle Scholar
  39. 39.
    M. Oettel, J. Phys.: Cond. Matter 24, 464124 (2012)ADSGoogle Scholar
  40. 40.
    M. Oettel, S. Dorosz, M. Berghoff, B. Nestler, T. Schilling, Phys. Rev. E 86, 021404 (2012)ADSCrossRefGoogle Scholar
  41. 41.
    S. van Teeffelen, R. Backofen, A. Voigt, H. Löwen, Phys. Rev. E 79, 051404 (2009)ADSCrossRefGoogle Scholar
  42. 42.
    G. Tegze, L. Gránásy, G.I. Tóth, F. Podmaniczky, A. Jaatinen, T. Ala-Nissila, T. Pusztai, Phys. Rev. Lett. 103, 035702 (2009)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2014

Authors and Affiliations

  1. 1.Institute of Applied Materials, Karlsruhe Institute of TechnologyKarlsruheDeutschland

Personalised recommendations