Advertisement

The European Physical Journal Special Topics

, Volume 223, Issue 3, pp 373–387 | Cite as

Density functional theory of heterogeneous crystallization

  • T. Neuhaus
  • A. Härtel
  • M. Marechal
  • M. Schmiedeberg
  • H. Löwen
Review
Part of the following topical collections:
  1. Heterogenous Nucleation and Microstructure Formation: Steps Towards a System and Scale Bridging Understanding

Abstract

This mini-review summarizes recent progress in describing heterogeneous crystallization processes and microstructure formation within microscopic classical density functional theory (DFT). After outlining the basic features of DFT, we discuss several applications ranging from the structure and thermodynamics of fluid-crystal interfaces for hard sphere and Yukawa systems to dynamical phenomena such as crystal growth on structured substrates and induced by externally imposed seeds.

Keywords

Density Functional Theory European Physical Journal Special Topic Hard Sphere Packing Fraction Excess Free Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Singh, Phys. Rep. 207, 351 (1991)ADSCrossRefGoogle Scholar
  2. 2.
    H. Löwen, Phys. Rep. 237, 249 (1994)ADSCrossRefGoogle Scholar
  3. 3.
    J. Wu, AIChE J. 52, 1169 (2006)CrossRefGoogle Scholar
  4. 4.
    P. Tarazona, J.A. Cuesta, Y. Martinez-Raton, Density Functional Theories of Hard Particle Systems (Springer Berlin/Heidelberg, 2008)Google Scholar
  5. 5.
    G. Kahl, H. Löwen, J. Phys. 21, 464101 (2009)Google Scholar
  6. 6.
    J.F. Lutsko, Adv. Chem. Phys. 144, 1 (2010)Google Scholar
  7. 7.
    R. Roth, J. Phys. 22, 063102 (2010)Google Scholar
  8. 8.
    Y. Rosenfeld, Phys. Rev. Lett. 63, 980 (1989)ADSCrossRefGoogle Scholar
  9. 9.
    A.J. Archer, Phys. Rev. E 72, 051501 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    D.W. Oxtoby, Liquids, Freezing and the Glass Transition (North Holland, Amsterdam, 1991)Google Scholar
  11. 11.
    V. Talanquer, D.W. Oxtoby, J. Chem. Phys. 104, 1993 (1996)ADSCrossRefGoogle Scholar
  12. 12.
    I. Napari, A. Laaksonen, J. Chem. Phys. 111, 5485 (1999)ADSCrossRefGoogle Scholar
  13. 13.
    B. Husowitz, V. Talanquer, J. Chem. Phys. 122, 194710 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    T.V. Bykov, X.C. Zeng, J. Chem. Phys. 125, 144515 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    U.M.B. Marconi, P. Tarazona, J. Chem. Phys. 110, 8032 (1999)ADSCrossRefGoogle Scholar
  16. 16.
    U.M.B. Marconi, P. Tarazona, J. Phys. 12, A413 (2000)Google Scholar
  17. 17.
    A.J. Archer, R. Evans, J. Chem. Phys. 121, 4246 (2004)ADSCrossRefGoogle Scholar
  18. 18.
    P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964)ADSCrossRefMathSciNetGoogle Scholar
  19. 19.
    W. Kohn, Nobel Lecture: Electronic Structure of Matter – Wave Functions and Density Functionals (World Scientific Publishing Co., Singapore, 2003)Google Scholar
  20. 20.
    N.D. Mermin, Phys. Rev. 137, A1441 (1965)ADSCrossRefMathSciNetGoogle Scholar
  21. 21.
    C. Ebner, W.F. Saam, D. Stroud, Phys. Rev. A 14, 2264 (1976)ADSCrossRefGoogle Scholar
  22. 22.
    R. Evans, Adv. Phys. 28, 143 (1979)ADSCrossRefGoogle Scholar
  23. 23.
    J.K. Percus, J. Stat. Phys. 15, 505 (1976)ADSCrossRefMathSciNetGoogle Scholar
  24. 24.
    R.L.C. Vink, T. Neuhaus, H. Löwen, J. Chem. Phys. 134, 204907 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    E. Kierlik, M.L. Rosinberg, Phys. Rev. A 42, 3382 (1990)ADSCrossRefGoogle Scholar
  26. 26.
    S. Phan, E. Kierlik, M.L. Rosinberg, B. Bildstein, G. Kahl, Phys. Rev. E 48, 618 (1993)ADSCrossRefGoogle Scholar
  27. 27.
    Y. Rosenfeld, M. Schmidt, H. Löwen, P. Tarazona, J. Phys. 8, L577 (1996)Google Scholar
  28. 28.
    Y. Rosenfeld, M. Schmidt, H. Löwen, P. Tarazona, Phys. Rev. E 55, 4245 (1997)ADSCrossRefGoogle Scholar
  29. 29.
    P. Tarazona, Y. Rosenfeld, Phys. Rev. E 55, R4873 (1997)ADSCrossRefGoogle Scholar
  30. 30.
    P. Tarazona, Phys. Rev. Lett. 84, 694 (2000)ADSCrossRefGoogle Scholar
  31. 31.
    R. Roth, R. Evans, A. Lang, G. Kahl, J. Phys. 14, 12063 (2002)Google Scholar
  32. 32.
    Y.-X. Yu, J. Wu, J. Chem. Phys. 117, 10156 (2002)ADSCrossRefGoogle Scholar
  33. 33.
    H. Hansen-Goos, R. Roth, J. Phys. 18, 8413 (2006)Google Scholar
  34. 34.
    H. Hansen-Goos, R. Roth, J. Chem. Phys. 124, 154506 (2006)ADSCrossRefGoogle Scholar
  35. 35.
    A. Härtel, M. Oettel, R.E. Rozas, S.U. Egelhaaf, J. Horbach, H. Löwen, Phys. Rev. Lett. 108, 226101 (2012)ADSCrossRefGoogle Scholar
  36. 36.
    E. Kierlik, M.L. Rosinberg, Phys. Rev. A 44, 5025 (1991)ADSCrossRefGoogle Scholar
  37. 37.
    Y. Rosenfeld, J. Chem. Phys. 98, 8126 (1993)ADSCrossRefGoogle Scholar
  38. 38.
    H. Hansen-Goos, K. Mecke, Phys. Rev. Lett. 102, 018302 (2009)ADSCrossRefGoogle Scholar
  39. 39.
    H. Hansen-Goos, K. Mecke, J. Phys. 22, 364107 (2010)Google Scholar
  40. 40.
    R. Roth, K. Mecke, M. Oettel, J. Chem. Phys. 136, 081101 (2012)ADSCrossRefGoogle Scholar
  41. 41.
    P. Tarazona, Y. Rosenfeld, Free Energy Density Functional From 0D Cavities in New Approaches to Problems in Liquid State Theory Inhomogeneities and Phase Separation in Simple, Complex and Quantum Fluids, edited by C. Caccamo, J.-P. Hansen, G. Stell, NATO Sci. Ser. C 529 (Springer Netherlands, 1998), p. 293Google Scholar
  42. 42.
    D. Henderson, F.F. Abraham, J.A. Barker, Mol. Phys. 31, 1291 (1976)ADSCrossRefGoogle Scholar
  43. 43.
    M.M. Telo Da Gama, R. Evans, Mol. Phys. 38, 367 (1979)ADSCrossRefGoogle Scholar
  44. 44.
    J.W. Cahn, J. Chem. Phys. 42, 93 (1965)ADSCrossRefGoogle Scholar
  45. 45.
    M. Oettel, S. Görig, A. Härtel, H. Löwen, M. Radu, T. Schilling, Phys. Rev. E 82, 051404 (2010)ADSCrossRefGoogle Scholar
  46. 46.
    T. Neuhaus, M. Marechal, M. Schmiedeberg, H. Löwen, Phys. Rev. Lett. 110, 118301 (2013)ADSCrossRefGoogle Scholar
  47. 47.
    A.C. Mitus, H. Weber, D. Marx, Phys. Rev. E 55, 6855 (1997)ADSCrossRefGoogle Scholar
  48. 48.
    J.A. Weiss, D.A. Oxtoby, D.G. Grier, C.A. Murray, J. Chem. Phys. 103, 1180 (1995)ADSCrossRefGoogle Scholar
  49. 49.
    T. Neuhaus, M. Schmiedeberg, H. Löwen, New J. Phys. 15, 073013 (2013)ADSCrossRefGoogle Scholar
  50. 50.
    T.V. Ramakrishnan, M. Yussouff, Phys. Rev. B 19, 2775 (1979)ADSCrossRefGoogle Scholar
  51. 51.
    S. van Teeffelen, C.N. Likos, H. Löwen, Phys. Rev. Lett. 100, 108302 (2008)ADSCrossRefGoogle Scholar
  52. 52.
    L. Assoud, F. Ebert, P. Keim, R. Messina, G. Maret, H. Löwen, Phys. Rev. Lett. 102, 238301 (2009)ADSCrossRefGoogle Scholar
  53. 53.
    L. Assoud, F. Ebert, P. Keim, R. Messina, G. Maret, H. Löwen, J. Phys. 21, 464114 (2009)Google Scholar
  54. 54.
    L. Assoud, R. Messina, H. Löwen, Mol. Phys. 109, 1385 (2011)ADSCrossRefGoogle Scholar
  55. 55.
    V. Heinonen, A. Mijailovic, C.V. Achim, T. Ala-Nissila, R.E. Rozas, J. Horbach, H. Löwen, J. Chem. Phys. 138, 044705 (2013)ADSCrossRefGoogle Scholar
  56. 56.
    A. Ivlev, G. Morfill, H. Löwen, Complex Plasmas and Colloidal Dispersions: Particle-Resolved Studies of Classical Liquids and Solids (World Scientific, 2012)Google Scholar
  57. 57.
    E. Allahyarov, K. Sandomirski, S.U. Egelhaaf, H. Löwen (submitted) (2013)Google Scholar
  58. 58.
    K. Sandomirski, S. Walta, J. Dubbert, E. Allahyarov, A.B. Schofield, H. Löwen, W. Richtering, S.U. Egelhaaf, Eur. Phys. J. Special Topics 223(3), 439 (2014)ADSGoogle Scholar
  59. 59.
    R. Backofen, A. Voigt, Eur. Phys. J. Special Topics 223(3), 497 (2014)ADSGoogle Scholar
  60. 60.
    T. Vissers, A. Wysocki, M. Rex, H. Löwen, C.P. Royall, A. Imhof, A. van Blaaderen, Soft Matter 7, 2352 (2011)ADSCrossRefGoogle Scholar
  61. 61.
    A. Cacciuto, S. Auer, D. Frenkel, Nature 428, 404 (2004)ADSCrossRefGoogle Scholar
  62. 62.
    H. Löwen, J. Phys. 22, 364105 (2010)Google Scholar
  63. 63.
    R. Wittkowski, H. Löwen, H.R. Brand, Phys. Rev. E 82, 031708 (2010)ADSCrossRefGoogle Scholar
  64. 64.
    E. Granato, J.A.P. Ramos, C.V. Achim, J. Lehikoinen, S.C. Ying, T. Ala-Nissila, K.R. Elder, Phys. Rev. E 84, 031102 (2011)ADSCrossRefGoogle Scholar
  65. 65.
    H. Emmerich, H. Löwen, R. Wittkowski, T. Gruhn, G.I. Tóth, G. Tegze, L. Gránásy, Adv. Phys. 61, 665 (2012)ADSCrossRefGoogle Scholar
  66. 66.
    S. van Teeffelen, R. Backofen, A. Voigt, H. Löwen, Phys. Rev. E 79, 051404 (2009)ADSCrossRefGoogle Scholar
  67. 67.
    M.A. Choudhary, D. Li, H. Emmerich, H. Löwen, J. Phys. 23, 265005 (2011)Google Scholar
  68. 68.
    H. Löwen, T. Beier, H. Wagner, Europhys. Lett. 9, 791 (1989)ADSCrossRefGoogle Scholar
  69. 69.
    A. Härtel, R. Blaak, H. Löwen, Phys. Rev. E 81, 051703 (2010)ADSCrossRefGoogle Scholar
  70. 70.
    S. van Teeffelen, C.V. Achim, H. Löwen, Phys. Rev. E 87, 022306 (2013)ADSCrossRefGoogle Scholar
  71. 71.
    R. Wittkowski, H. Löwen, H.R. Brand, J. Chem. Phys. 137, 224904 (2012)ADSCrossRefGoogle Scholar
  72. 72.
    P. Español, H. Löwen, J. Chem. Phys. 131, 244101 (2009)ADSCrossRefGoogle Scholar
  73. 73.
    R. Wittkowski, H. Löwen, H.R. Brand, J. Phys. A 46, 355003 (2013)CrossRefMathSciNetGoogle Scholar
  74. 74.
    T. Neuhaus, M. Schmiedeberg, H. Löwen, Phys. Rev. E 88, 062316 (2013)ADSCrossRefGoogle Scholar
  75. 75.
    E. Villanova-Vidal, T. Palberg, H.J. Schöpe, H. Löwen, Philos. Mag. 89, 1695 (2009)ADSCrossRefGoogle Scholar
  76. 76.
    C. Renner, H. Löwen, J.L. Barrat, Phys. Rev. E 52, 5091 (1995)ADSCrossRefGoogle Scholar
  77. 77.
    T. Fehr, H. Löwen, Phys. Rev. E 52, 4016 (1995)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2014

Authors and Affiliations

  1. 1.Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität DüsseldorfDüsseldorfGermany
  2. 2.Institute for Theoretical Physics, Universiteit UtrechtUtrechtThe Netherlands
  3. 3.Institut für Theoretische Physik, Universität Erlangen-NürnbergErlangenGermany

Personalised recommendations