The European Physical Journal Special Topics

, Volume 223, Issue 1, pp 155–166 | Cite as

Mean field model for synchronization of coupled two-state units and the effect of memory

  • D. EscaffEmail author
  • K. Lindenberg
Regular Article
Part of the following topical collections:
  1. Localized Structures in Physics and Chemistry


A prototypical model for a mean field second order transition is presented, which is based on an ensemble of coupled two-states units. This system is used as a basic model to study the effect of memory. To wit, we distinguish two types of memories: weak and strong, depending on the feasibility of linearizing the generalized mean field master equation. For weak memory we find static solutions that behave much like those of the memoryless (Markovian) system. The latter exhibits a pitchfork bifurcation as the control parameter is increased, with two stable and one unstable solution. The former exhibits an imperfect pitchfork bifurcation to states with the same behaviors. In both cases, the stability of the static solutions is analyzed via the usual linearization around the equilibrium solution. For strong memories we again find an imperfect pitchfork bifurcation, with two stable and one unstable branch. However, it is no longer possible to analyze these behaviors via the usual linearization, which is local in time, because a strong memory requires knowledge of the system for its entire past. Finally, we are pleased to dedicate this publication to Helmut Brand on the occasion of his 60th birthday.


Static Solution Direct Numerical Simulation European Physical Journal Special Topic Master Equation Equilibrium Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.M. Turing, Phil. Trans. R. Soc. B 237, 37 (1952)CrossRefADSGoogle Scholar
  2. 2.
    M.C. Cross, P.C. Hohenberg, Rev. Mod. Phys. 65, 851 (1993)CrossRefADSGoogle Scholar
  3. 3.
    J.D. Murray, Mathematical Biology (Springer-Verlag, Berlin, 1989)Google Scholar
  4. 4.
    D. Krefting, P. Kaira, H.H. Rotermund, Phys. Rev. Lett. 102, 178301 (2009)CrossRefADSGoogle Scholar
  5. 5.
    T. Butler, N. Goldenfeld, Phys. Rev. E 80, 030902 (2009)CrossRefADSGoogle Scholar
  6. 6.
    T. Biancalani, D. Fanelli, F. Di Patti, Phys. Rev. E 81, 046215 (2010)CrossRefADSGoogle Scholar
  7. 7.
    Y. Kuramoto, International Symposium on Mathematical Problems in Theoretical Physics, Lecture Notes in Physics (Springer, 1975)Google Scholar
  8. 8.
    S.H. Strogatz, Physica D 143, 1 (2000)CrossRefzbMATHMathSciNetADSGoogle Scholar
  9. 9.
    J.A. Acebrón, L.L. Bonilla, C.J. Perez Vicente, F. Ritort, R. Spigler, Rev. Mod. Phys. 77, 137 (2005)CrossRefADSGoogle Scholar
  10. 10.
    P.M. Gade, Chin-Kun Hu, Phys. Rev. E 62, 6409 (2000)CrossRefADSGoogle Scholar
  11. 11.
    H. Zhou, R. Lipowsky, Proc. Natl. Acad. Sci. USA 105, 10052 (2005)CrossRefGoogle Scholar
  12. 12.
    T. Prager, B. Naundorf, L. Schimansky-Geier, Physica A 325, 176 (2003)CrossRefzbMATHMathSciNetADSGoogle Scholar
  13. 13.
    T. Prager, M. Falcke, L. Schimansky-Geier, M.A. Zaks, Phys. Rev. E 76, 011118 (2007)CrossRefMathSciNetADSGoogle Scholar
  14. 14.
    N. Kouvaris, F. Muller, L. Schimansky-Geier, Phys. Rev. E 82, 061124 (2010)CrossRefMathSciNetADSGoogle Scholar
  15. 15.
    D. Escaff, U. Harbola, K. Lindenberg, Phys. Rev. E 86, 011131 (2012)CrossRefADSGoogle Scholar
  16. 16.
    M.A. Fuentes, M.N. Kuperman, V.M. Kenkre, Phys. Rev. Lett. 91, 158104-1-4 (2003)CrossRefADSGoogle Scholar
  17. 17.
    E. Hernandez-Garcia, C. Lopez, Phys. Rev. E 70, 016216 (2004)CrossRefADSGoogle Scholar
  18. 18.
    E. Hernandez-Garcia, C. Lopez, Physica (Amsterdam) 199D, 223 (2004)MathSciNetADSGoogle Scholar
  19. 19.
    M. Hernandez, D. Escaff, R. Finger, Phys. Rev. E 85, 056218 (2012)CrossRefADSGoogle Scholar
  20. 20.
    M.G. Clerc, D. Escaff, V.M. Kenkre, Phys. Rev. E 72, 056217 (2005)CrossRefADSGoogle Scholar
  21. 21.
    D. Escaff, Int. J. Bifurcation Chaos 19, 3509 (2009)CrossRefzbMATHMathSciNetADSGoogle Scholar
  22. 22.
    M.G. Clerc, D. Escaff, V.M. Kenkre, Phys. Rev. E 82, 036210 (2010)CrossRefMathSciNetADSGoogle Scholar
  23. 23.
    D. Escaff, Eur. Phys. J. D 62, 33 (2011)CrossRefADSGoogle Scholar
  24. 24.
    C. Fernandez-Oto, M.G. Clerc, D. Escaff, M. Tlidi, Phys. Rev. Lett. 110, 174101 (2013)CrossRefADSGoogle Scholar
  25. 25.
    K. Wood, C. Van den Broeck, R. Kawai, K. Lindenberg, Phys. Rev. Lett. 96, 145701 (2006)CrossRefADSGoogle Scholar
  26. 26.
    K. Wood, C. Van den Broeck, R. Kawai, K. Lindenberg, Phys. Rev. E 74, 031113 (2006)CrossRefADSGoogle Scholar
  27. 27.
    K. Wood, C. Van den Broeck, R. Kawai, K. Lindenberg, Phys. Rev. E 75, 041107 (2007)CrossRefMathSciNetADSGoogle Scholar
  28. 28.
    K. Wood, C. Van den Broeck, R. Kawai, K. Lindenberg, Phys. Rev. E 76, 041132 (2007)CrossRefMathSciNetADSGoogle Scholar
  29. 29.
    V.R.V. Assis, M. Copelli, R. Dickman, J. Stat. Mech., P09023 (2011)Google Scholar
  30. 30.
    V.R.V. Assis, M. Copelli, Physica A 391, 1900 (2012)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences and Springer 2014

Authors and Affiliations

  1. 1.Universidad de los Andes, Facultad de Ingeniera y Ciencias AplicadasLas Condes, SantiagoChile
  2. 2.Department of Chemistry and Biochemistry and BioCircuits InstituteUniversity of California San DiegoSan DiegoUSA

Personalised recommendations