The European Physical Journal Special Topics

, Volume 223, Issue 1, pp 91–98 | Cite as

Symmetry breaking term effects on explosive localized solitons

  • C. Cartes
  • O. Descalzi
Regular Article
Part of the following topical collections:
  1. Localized Structures in Physics and Chemistry


We study the influence of an analog of self–steepening (SST), which is a term breaking the T →−T symmetry, on explosive localized solutions for the cubic–quintic complex Ginzburg–Landau equation in the anomalous dispersion regime. We find that while this explosive behavior occurs for a wide range of the parameter s, characterizing SST, the mean distance between explosions diverges close to a critical value s c . After this value the explosive solution becomes a fixed shape soliton that moves at constant speed. The transition between explosive and regular behavior is characterized by a transcritical bifurcation controlled by the SST parameter. We also proposed a mechanism which explains and predicts the mean distance between explosions as a function of s. We are glad to dedicate this article to Professor Helmut R. Brand on occasion of his 60th birthday.


Soliton Explosive Graphical Processing Unit European Physical Journal Special Topic Propagation Distance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ph. Grelu, N. Akhmediev, Nat. Photon. 6, 84 (2012)CrossRefADSGoogle Scholar
  2. 2.
    S.T. Cundiff, J.M. Soto-Crespo, N. Akhmediev, Phys. Rev. Lett. 88, 073903 (2002)CrossRefADSGoogle Scholar
  3. 3.
    J.M. Soto-Crespo, N. Akhmediev, A. Ankiewicz, Phys. Rev. Lett. 85, 2937 (2000)CrossRefADSGoogle Scholar
  4. 4.
    N. Akhmediev, J. M. Soto-Crespo, G. Town, Phys. Rev. E 63, 056602 (2001)CrossRefADSGoogle Scholar
  5. 5.
    O. Descalzi, H.R. Brand, Phys. Rev. E 82, 026203 (2010)CrossRefADSGoogle Scholar
  6. 6.
    O. Descalzi, C. Cartes, J. Cisternas, H.R. Brand, Phys. Rev. E 83, 056214 (2011)CrossRefADSGoogle Scholar
  7. 7.
    J. Cisternas, O. Descalzi, Phys. Rev. E 88, 022903 (2013)CrossRefADSGoogle Scholar
  8. 8.
    J.M. Soto-Crespo, N. Akhmediev, N. Devine, C. Mejia-Cortes, Opt. Expr. 16, 15388 (2008)CrossRefADSGoogle Scholar
  9. 9.
    C. Cartes, J. Cisternas, O. Descalzi, H.R. Brand, Phys. Rev. Lett. 109, 178303 (2012)CrossRefADSGoogle Scholar
  10. 10.
    G.P. Agrawal, Nonlinear Fiber Optics (Academic Press, Oxford, 2013)Google Scholar
  11. 11.
    S.V. Latas, M.F.S. Ferreira, Opt. Lett. 35, 1771 (2010)CrossRefADSGoogle Scholar
  12. 12.
    S.C.V. Latas, M.F.S. Ferreira, Opt. Lett. 36, 3085 (2011)CrossRefADSGoogle Scholar
  13. 13.
    A. Klöckner, N. Pinto, Y. Lee, B. Catanzaro, P. Ivanov, A. Fasih, Parallel Comput. 38, 157 (2012)CrossRefGoogle Scholar
  14. 14.
    F. DeMartini, C.H. Townes, T.K. Gustafson, P.L. Kelley, Phys. Rev. 164, 312 (1967)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences and Springer 2014

Authors and Affiliations

  1. 1.Complex Systems Group, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de los AndesLas Condes, SantiagoChile

Personalised recommendations