Advertisement

The European Physical Journal Special Topics

, Volume 223, Issue 1, pp 21–41 | Cite as

Noisy CO oxidation on Iridium(111) surfaces

Experiments explained by theory under realistic assumptions
  • S. Wehner
  • J. Cisternas
  • O. Descalzi
  • J. Küppers
Review
Part of the following topical collections:
  1. Localized Structures in Physics and Chemistry

Abstract

Noise is an everywhere phenomenon. Its influence could be described theoretically quite easily, but is hard to measure in an experiment. Catalytic reactions on surfaces can be described by nonlinear reaction-diffusion equations. For one of such surface reactions – CO oxidation on Iridium(111) surfaces – the probability distribution of CO2 rates around the mean value – showing the influence of noise – could be measured directly in a ultra high vacuum (UHV) experiment. This opens the way to address such a fundamental phenomenon like noise by all three modern methods of physics – experimental, computational and analytical. We show the measured effect of colored noise on a bistable surface reaction and explain all observations directly with the underlying theoretical description – the Langmuir-Hinshelwood reaction scheme – by solving the equations under realistic assumptions. It is a great pleasure to dedicate this work to Prof. Dr. Helmut R. Brand on the occasion of his 60th birthday.

Keywords

Iridium European Physical Journal Special Topic Colored Noise Ultra High Vacuum Noise Strength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Holleman-Wiberg, Lehrbuch der Anorganischen Chemie, Vol. 102 (Auflage. Berlin, 2007)Google Scholar
  2. 2.
    J. Küppers, A. Plagge, J. Vac. Sci. Technol. 13, 259 (1976)CrossRefGoogle Scholar
  3. 3.
    H. Conrad, J. Küppers, F. Nitschké, A. Plagge, Surf. Sci. 69, 668 (1977)CrossRefADSGoogle Scholar
  4. 4.
    J. Küppers, A. Plagge, Z. Naturforsch. 34a, 81 (1979)ADSGoogle Scholar
  5. 5.
    S. Nie, A. Walter, N. Bartelt, E. Starodub, A. Bostwick, E. Rotenberg, K. McCarty, ACS NANO 5, 2298 (2011)CrossRefGoogle Scholar
  6. 6.
    J. Wintterlin, M. Bocquet, Surf. Sci. 603, 1841 (2009)CrossRefADSGoogle Scholar
  7. 7.
    J. Coraux, A. N’Diaye, M. Engler, C. Busse, D. Wall, N. Buckanie, F. Heringdorf, Z. Meyer, R.v. Gastel, B. Poelsema, T. Michely, New J. Phys. 11, 023006 (2009)CrossRefADSGoogle Scholar
  8. 8.
    T. Engel, G. Ertl, Adv. Catal. 28, 1 (1979)CrossRefGoogle Scholar
  9. 9.
    T. Engel, G. Ertl, J. Chem. Phys. 69, 1267 (1978)CrossRefADSGoogle Scholar
  10. 10.
    G. Ertl, P. Norton, J. Rüstig, Phys. Rev. Lett. 49, 177 (1982)CrossRefADSGoogle Scholar
  11. 11.
    H. Rotermund, W. Engel, M. Kordesh, G. Ertl, Nature 343, 355 (1990)CrossRefADSGoogle Scholar
  12. 12.
    M. Eiswirth, K. Krischer, G. Ertl, Appl. Phys. A 51, 79 (1990)CrossRefADSGoogle Scholar
  13. 13.
    K. Krischer, M. Eiswirth, G. Ertl, J. Chem. Phys. 97, 307 (1992)CrossRefADSGoogle Scholar
  14. 14.
    S. Wehner, F. Baumann, M. Ruckdeschel, J. Küppers, J. Chem. Phys. 119, 6823 (2003)CrossRefADSGoogle Scholar
  15. 15.
    M. Ehsasi, M. Matloch, O. Frank, J. Block, K. Christmann, F. Rys, W. Hirschwald, J. Chem. Phys. 91, 4949 (1989)CrossRefADSGoogle Scholar
  16. 16.
    S. Wehner, F. Baumann, J. Küppers, Chem. Phys. Lett. 370, 126 (2003)CrossRefADSGoogle Scholar
  17. 17.
    Y. Hayase, S. Wehner, J. Küppers, H. Brand, Phys. Rev. E 69, 021609 (2004)CrossRefADSGoogle Scholar
  18. 18.
    Y. Hayase, S. Wehner, J. Küppers, H. Brand, Physica D 205, 15 (2005)CrossRefzbMATHADSGoogle Scholar
  19. 19.
    S. Wehner, Y. Hayase, H. Brand, J. Küppers, J. Phys. Chem. B 108, 14452 (2004)CrossRefGoogle Scholar
  20. 20.
    S. Wehner, P. Hoffmann, D. Schmeisser, H. Brand, J. Küppers, Phys. Rev. Lett. 95, 038301 (2005)CrossRefADSGoogle Scholar
  21. 21.
    P. Hoffmann, S. Wehner, D. Schmeisser, H. Brand, J. Küppers, Phys. Rev. E 73, 056123 (2006)CrossRefADSGoogle Scholar
  22. 22.
    S. Wehner, P. Hoffmann, D. Schmeisser, H. Brand, J. Küppers, Chem. Phys. Lett. 423, 39 (2006)CrossRefADSGoogle Scholar
  23. 23.
    S. Wehner, P. Hoffmann, D. Schmeisser, H. Brand, J. Küppers, AIP Conf. Proc. 913, 121 (2007)CrossRefADSGoogle Scholar
  24. 24.
    S. Wehner, Int. J. Bif. Chaos 19, 2637 (2009)CrossRefGoogle Scholar
  25. 25.
    J. Cisternas, D. Escaff, O. Descalzi, S. Wehner, Int. J. Bif. Chaos 19, 3461 (2009)CrossRefzbMATHGoogle Scholar
  26. 26.
    J. Cisternas, D. Escaff, O. Descalzi, S. Wehner, Int. J. Bif. Chaos 20, 243 (2010)CrossRefzbMATHGoogle Scholar
  27. 27.
    J. Cisternas, R. Lecaros, S. Wehner, Eur. J. Phys. D 62, 91 (2011)CrossRefADSGoogle Scholar
  28. 28.
    J. Cisternas, S. Wehner, O. Descalzi, J. Chem. Phys. 137, 064105 (2012)CrossRefADSGoogle Scholar
  29. 29.
    M. Pineda, R. Imbihl, L. Schimansky-Geier, C. Zülicke, J. Chem. Phys. 124, 044701 (2006)CrossRefADSGoogle Scholar
  30. 30.
    M. Pineda, L. Schimansky-Geier, R. Imbihl, Phys. Rev. E 75, 061107 (2007)CrossRefADSGoogle Scholar
  31. 31.
    P. Bodega, S. Alonso, H. Rotermund, J. Chem. Phys. 130, 1 (2009)CrossRefGoogle Scholar
  32. 32.
    M. Pineda, R. Toral, J. Chem. Phys. 130, 124704 (2009)CrossRefADSGoogle Scholar
  33. 33.
    M. Pineda, R. Imbihl, L. Schimansky-Geier, Physica A 389, 1178 (2010)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences and Springer 2014

Authors and Affiliations

  • S. Wehner
    • 1
    • 3
  • J. Cisternas
    • 2
  • O. Descalzi
    • 2
  • J. Küppers
    • 3
    • 4
  1. 1.Institut für Integrierte Naturwissenschaften – Physik, Universität Koblenz-LandauKoblenzGermany
  2. 2.Complex Systems Group, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de los AndesLas Condes, SantiagoChile
  3. 3.Experimentalphysik III, Universität BayreuthBayreuthGermany
  4. 4.Max-Planck-Institut für Plasmaphysik (EURATOM Association)GarchingGermany

Personalised recommendations