Advertisement

The European Physical Journal Special Topics

, Volume 222, Issue 12, pp 3089–3169 | Cite as

Emergence and persistence of diversity in complex networks

  • Gesa Angelika Böhme
Review
  • 314 Downloads

Abstract

Complex networks are employed as a mathematical description of complex systems in many different fields, ranging from biology to sociology, economy and ecology. Dynamical processes in these systems often display phase transitions, where the dynamics of the system changes qualitatively. In combination with these phase transitions certain components of the system might irretrievably go extinct. In this case, we talk about absorbing transitions. Developing mathematical tools, which allow for an analysis and prediction of the observed phase transitions is crucial for the investigation of complex networks. In this article we address absorbing transitions in dynamical networks, where a certain amount of diversity is lost. In some real-world examples, e.g. in the evolution of human societies or of ecological systems, it is desirable to maintain a high degree of diversity, whereas in others, e.g. in epidemic spreading, the diversity of diseases is worthwhile to confine. An understanding of the underlying mechanisms for emergence and persistence of diversity in complex systems is therefore essential. Within the scope of two different network models, we develop an analytical approach, which can be used to estimate the prerequisites for diversity. The mathematical framework presented here is based on concepts from percolation theory. While the specific implementation of the formalism differs from model to model, the basic principle allows for the calculation of absorbing phase transitions in a wide range of different network models.

Keywords

European Physical Journal Special Topic Prey Species Degree Distribution Voter Model Active Link 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Barrat, M. Barthlemy, A. Vespignani, Dynamical processes on complex networks (Cambridge University Press, 2008)Google Scholar
  2. 2.
    B. Drossel, A.J. McKane, Modelling food webs, Handbook of graphs and networks: From the genome to the internet (2003)Google Scholar
  3. 3.
    M.E.J. Newman, SIAM Rev., 167 (2003)Google Scholar
  4. 4.
    R. Albert, A.L. Barabási, Rev. Mod. Phys. 74, 47 (2002)ADSzbMATHGoogle Scholar
  5. 5.
    K. Klemm, S. Bornholdt, P. Natl. Acad. Sci. 102, 18414 (2005)ADSGoogle Scholar
  6. 6.
    R.J. Morgan, I. Soltesz, P. Natl. Acad. Sci. 105, 6179 (2008)ADSGoogle Scholar
  7. 7.
    S.S. Shen-Orr, R. Milo, S. Mangan, U. Alon, Nat. Gen. 31, 64 (2002)Google Scholar
  8. 8.
    R. Albert, I. Albert, G.L. Nakarado, Phys. Rev. E 69, 025103 (2004)ADSGoogle Scholar
  9. 9.
    R. Albert, H. Jeong, A. L. Barabási, Nature 401, 130 (1999)ADSGoogle Scholar
  10. 10.
    A. Barabási, R. Albert, H. Jeong, Physica A 281, 69 (2000)ADSGoogle Scholar
  11. 11.
    R. Guimera, S. Mossa, A. Turtschi, L.A. Nunes Amaral, P. Natl. Acad. Sci. 102, 7794 (2005)ADSzbMATHGoogle Scholar
  12. 12.
    V. Colizza, A. Barrat, M. Barthélemy, A. Vespignani, P. Natl. Acad. Sci. 103, 2015 (2006)ADSGoogle Scholar
  13. 13.
    M. Pascual, J.A. Dunne, Ecological networks: linking structure to dynamics in food webs (Oxford University Press, 2006)Google Scholar
  14. 14.
    C. Castellano, V. Loreto, Rev. Mod. Phys. 81, 591 (2009)ADSGoogle Scholar
  15. 15.
    C.I. Del Genio, H. Kim, Z. Toroczkai, K.E. Bassler, PloS one 5, e10012 (2010)Google Scholar
  16. 16.
    R. Erban, I.G. Kevrekidis, D. Adalsteinsson, T.C. Elston, J. Chem. Phys. 124, 084106 (2006)ADSGoogle Scholar
  17. 17.
    Y.-Y. Liu, J.-J. Slotine, A.-L. Barabási, Nature 473, 167 (2011)ADSGoogle Scholar
  18. 18.
    H. Silk, G. Demirel, M. Homer, T. Gross, Exploring network dynamics with a mathematical triple jump [arXiv:1302.2743] (2013)
  19. 19.
    A.-L. Do, S. Boccaletti, T. Gross, Phys. Rev. Lett. 108, 194102 (2012)ADSGoogle Scholar
  20. 20.
    T. Gross, I.G. Kevrekidis, Europhys. Lett. 82, 38004 (2008)MathSciNetGoogle Scholar
  21. 21.
    A. Arenas, A. Díaz-Guilera, J. Kurths, Y. Moreno, C. Zhou, Phys. Rep. 469, 93 (2008)ADSMathSciNetGoogle Scholar
  22. 22.
    A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization: A universal concept in nonlinear sciences (Cambridge University Press, 2003)Google Scholar
  23. 23.
    G. Zschaler, Eur. Phys. J. Special Topic 211, 1 (2012)ADSGoogle Scholar
  24. 24.
    A.J. Koch, H. Meinhardt, Rev. Mod. Phys. 66, 1481 (1994)ADSGoogle Scholar
  25. 25.
    E. Ravasz, A.L. Somera, D.A. Mongru, Z.N. Oltvai, A.L. Barabási, Science 297, 1551 (2002)ADSGoogle Scholar
  26. 26.
    R. Guimera, L. Danon, A. Diaz-Guilera, F. Giralt, A. Arenas, Phys. Rev. E 68, 065103 (2003)ADSGoogle Scholar
  27. 27.
    S. Bornholdt, H.G. Schuster, J. Wiley, Handbook of graphs and networks (Wiley-VCH Verlag, 2003)Google Scholar
  28. 28.
    M.E.J. Newman, A.L. Barabási, D.J. Watts, The structure and dynamics of networks (Princeton University Press, 2006)Google Scholar
  29. 29.
    D.K. Arrowsmith, C.M. Place, An introduction to dynamical systems (Cambridge University Press, 1990)Google Scholar
  30. 30.
    S.H. Strogatz, Nonlinear dynamics and chaos: With applications to physics, biology, chemistry, and engineering (Westview Press, 1994)Google Scholar
  31. 31.
    S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.U. Hwang, Phys. Rep. 424, 175 (2006)ADSMathSciNetGoogle Scholar
  32. 32.
    M.E.J. Newman, Phys. Rev. Lett. 89, 208701 (2002)ADSGoogle Scholar
  33. 33.
    C. Nardini, B. Kozma, A. Barrat, Phys. Rev. Lett. 100, 158701 (2008)ADSGoogle Scholar
  34. 34.
    D.J. Watts, Am. J. Soc. 105, 493 (1999)Google Scholar
  35. 35.
    S. Milgram, Psychol. Today 2, 60 (1967)Google Scholar
  36. 36.
    P. Erdos, A. Rényi, On the evolution of random graphs (Publ. Math. Inst. Hungar. Acad. Sci., 1960)Google Scholar
  37. 37.
    D.J. Watts, S.H. Strogatz, Nature 393, 440 (1998)ADSGoogle Scholar
  38. 38.
    B. Bollobás, Random graphs (Cambridge University Press, 2001)Google Scholar
  39. 39.
    A.L. Barabási, R. Albert, Science 286, 509 (1999)ADSMathSciNetGoogle Scholar
  40. 40.
    P.L. Krapivsky, S. Redner, Phys. Rev. E 71, 036118 (2005)ADSMathSciNetGoogle Scholar
  41. 41.
    S. Fortunato, A. Flammini, F. Menczer, Phys. Rev. Lett. 96, 218701 (2006)ADSGoogle Scholar
  42. 42.
    A.L. Barabási, H. Jeong, Z. Néda, E. Ravasz, A. Schubert, T. Vicsek, Physica A 311, 590 (2002)ADSzbMATHMathSciNetGoogle Scholar
  43. 43.
    E. Eisenberg, E.Y. Levanon, Phys. Rev. Lett. 91, 138701 (2003)ADSGoogle Scholar
  44. 44.
    H. Jeong, Z. Néda, A.L. Barabási, Eur. Phys. Lett. 61, 567 (2003)ADSGoogle Scholar
  45. 45.
    R.M. Anderson, R.M. May, Infectious diseases of humans: dynamics and control (Wiley-VCH Verlag, 1992)Google Scholar
  46. 46.
    L. Sattenspiel, C.P. Simon, Math. Biosci. 90, 341 (1988)zbMATHMathSciNetGoogle Scholar
  47. 47.
    I.M. Longini, Math. Biosci. 90, 367 (1988)zbMATHMathSciNetGoogle Scholar
  48. 48.
    M. Kretzschmar, M. Morris, Math. Biosci. 133, 165 (1996)zbMATHGoogle Scholar
  49. 49.
    L. Hufnagel, D. Brockmann, T. Geisel, P. Natl. Acad. Sci. 101, 15124 (2004)ADSGoogle Scholar
  50. 50.
    S. Eubank, H. Guclu, V.S.A. Kumar, M.V. Marathe, A. Srinivasan, Z. Toroczkai, N. Wang, Nature 429, 180 (2004)ADSGoogle Scholar
  51. 51.
    M.E.J. Newman, S. Forrest, J. Balthrop, Phys. Rev. E 66, 035101 (2002)ADSGoogle Scholar
  52. 52.
    R. Pastor-Satorras, A. Vespignani, Phys. Rev. Lett. 86, 3200 (2001)ADSGoogle Scholar
  53. 53.
    R. Pastor-Satorras, A. Vespignani, Phys. Rev. E 63, 066117 (2001)ADSGoogle Scholar
  54. 54.
    M.J. Keeling, Proc. Roy. Soc. Lond. B 266, 953 (1999)Google Scholar
  55. 55.
    M. Kuperman, G. Abramson, Phys. Rev. Lett. 86, 2909 (2001)ADSGoogle Scholar
  56. 56.
    M.E.J. Newman, Phys. Rev. E 66, 016128 (2002)ADSMathSciNetGoogle Scholar
  57. 57.
    L. Bettencourt, A. Cintrón-Arias, D.I. Kaiser, C. Castillo-Chávez, Physica A 364, 513 (2006)ADSGoogle Scholar
  58. 58.
    G. Szabó, A.L. Barabási, Network effects in service usage [arXiv:physics/0611177v1] (2006)
  59. 59.
    Y. Moreno, M. Nekovee, A.F. Pacheco, Phys. Rev. E 69, 066130 (2004)ADSGoogle Scholar
  60. 60.
    P. Van den Driessche, J. Watmough, Math. Biosci. 180, 29 (2002)zbMATHMathSciNetGoogle Scholar
  61. 61.
    O. Diekmann, J.A.P. Heesterbeek, M.G. Roberts, J. Roy. Soc. Interface 7, 873 (2010)Google Scholar
  62. 62.
    P. Grassberger, Math. Biosci. 63, 157 (1983)zbMATHGoogle Scholar
  63. 63.
    L.M. Sander, C.P. Warren, I.M. Sokolov, C. Simon, J. Koopman, Math. Biosci. 180, 293 (2002)zbMATHMathSciNetGoogle Scholar
  64. 64.
    T. Gross, B. Blasius, J. Roy. Soc. Interface 5, 259 (2008)Google Scholar
  65. 65.
    C. Huepe, G. Zschaler, A.L. Do, T. Gross, N. J. Phys. 13, 073022 (2011)Google Scholar
  66. 66.
    I.D. Couzin, C.C. Ioannou, G. Demirel, T. Gross, C.J. Torney, A. Hartnett, L. Conradt, S.A. Levin, N.E. Leonard, Science 334, 1578 (2011)ADSGoogle Scholar
  67. 67.
    C. Zhou, J. Kurths, Phys. Rev. Lett. 96, 164102 (2006)ADSGoogle Scholar
  68. 68.
    S. Bornholdt, T. Rohlf, Phys. Rev. Lett. 84, 6114 (2000)ADSGoogle Scholar
  69. 69.
    C. Meisel, A. Storch, S. Hallmeyer-Elgner, E. Bullmore, T. Gross, PLoS Comput. Biol. 8, e1002312 (2012)Google Scholar
  70. 70.
    P. Holme, G. Ghoshal, Phys. Rev. Lett. 96, 098701 (2006)ADSGoogle Scholar
  71. 71.
    M.G. Zimmermann, V.M. Eguíluz, M. San Miguel, A. Spadaro, Applications of Simulations in Social Sciences (Hermes Science Publications, 2000)Google Scholar
  72. 72.
    A.L. Do, L. Rudolf, T. Gross, N. J. Phys. 12, 063023 (2010)Google Scholar
  73. 73.
    J. Ito, K. Kaneko, Phys. Rev. Lett. 88, 028701 (2001)ADSGoogle Scholar
  74. 74.
    T. Gross, C.J.D. D’Lima, B. Blasius, Phys. Rev. Lett. 96, 208701 (2006)ADSGoogle Scholar
  75. 75.
    F. Vazquez, V.M. Eguíluz, M.S. Miguel, Phys. Rev. Lett. 100, 108702 (2008)ADSGoogle Scholar
  76. 76.
    T. Aoki, T. Aoyagi, Phys. Rev. Lett. 102, 34101 (2009)ADSGoogle Scholar
  77. 77.
    T. Gross, H. Sayama, Adaptive Networks (Springer Verlag, 2009)Google Scholar
  78. 78.
    L.B. Shaw, I.B. Schwartz, Phys. Rev. E 77 (2008)Google Scholar
  79. 79.
    G. Rozhnova, A. Nunes, A.J. McKane, Phys. Rev. E 84, 051919 (2011)ADSGoogle Scholar
  80. 80.
    T. Rogers, W. Clifford-Brown, C. Mills, T. Galla, J. Stat. Mech. 2012, P08018 (2012)Google Scholar
  81. 81.
    A.L. Do, T. Gross, Contact processes and moment closure on adaptive networks (Adaptive Networks, 2009)Google Scholar
  82. 82.
    M. Boguñá, R. Pastor-Satorras, Phys. Rev. E 66, 047104 (2002)ADSGoogle Scholar
  83. 83.
    V.M. Eguiluz, K. Klemm, Phys. Rev. Lett. 89, 108701 (2002)ADSGoogle Scholar
  84. 84.
    G. Zschaler, A. Traulsen, T. Gross, N. J. Phys. 12, 093015 (2010)Google Scholar
  85. 85.
    G. Demirel, R. Prizak, P.N. Reddy, T. Gross, Eur. Phys. J. B 84, 541 (2011)ADSGoogle Scholar
  86. 86.
    D. Kimura, Y. Hayakawa, Phys. Rev. E 78, 016103 (2008)ADSGoogle Scholar
  87. 87.
    L.B. Shaw, I.B. Schwartz, Phys. Rev. E 81, 046120 (2010)ADSGoogle Scholar
  88. 88.
    S. Risau-Gusman, D.H. Zanette, J. Theor. Biol. 257, 52 (2009)MathSciNetGoogle Scholar
  89. 89.
    I.U.A. Kuznetsov, Elements of applied bifurcation theory (Springer Verlag, 1998)Google Scholar
  90. 90.
    D.J. Watts, Ann. Rev. Soc. 30, 243 (2004)Google Scholar
  91. 91.
    A.L. Barabási, J. Frangos, Linked: The New Science of Networks (Perseus Publishing, 2002)Google Scholar
  92. 92.
    J. Scott, Sociology 22, 109 (1988)Google Scholar
  93. 93.
    J.A. Barnes, Sociology 3, 215 (1969)Google Scholar
  94. 94.
    P.A. Grabowicz, J.J. Ramasco, V.M. Eguiluz [arXiv:1210.0808] (2012)
  95. 95.
    R. Kumar, J. Novak, A. Tomkins, Structure and evolution of online social networks, Link Mining: Models, Algorithms, and Applications (2010)Google Scholar
  96. 96.
    D. Centola, Science 329, 1194 (2010)ADSGoogle Scholar
  97. 97.
    N. Eagle, A.S. Pentland, D. Lazer, P. Natl. Acad. Sci. 106, 15274 (2009)ADSGoogle Scholar
  98. 98.
    C.A. Hidalgo, C. Rodriguez-Sickert, Physica A 387, 3017 (2008)ADSGoogle Scholar
  99. 99.
    A. Mislove, M. Marcon, K.P. Gummadi, P. Druschel, B. Bhattacharjee, Measurement and analysis of online social networks, Proc. 7th conf. on Internet measurement (2007)Google Scholar
  100. 100.
    G. Kossinets, D.J. Watts, Science 311, 88 (2006)ADSzbMATHMathSciNetGoogle Scholar
  101. 101.
    H. Ohtsuki, C. Hauert, E. Lieberman, M.A. Nowak, Nature 441, 502 (2006)ADSGoogle Scholar
  102. 102.
    L. DallAsta, A. Baronchelli, A. Barrat, V. Loreto, Phys. Rev. E 74, 036105 (2006)ADSGoogle Scholar
  103. 103.
    P. Holme, M.E.J. Newman, Phys. Rev. E 74, 056108 (2006)ADSGoogle Scholar
  104. 104.
    S. Gil, D.H. Zanette, Phys. Lett. A 356, 89 (2006)ADSzbMATHGoogle Scholar
  105. 105.
    R. Hegselmann, U. Krause, J. Artif. Soc. Soc. Simul. 5 (2002)Google Scholar
  106. 106.
    G. Weisbuch, G. Deffuant, F. Amblard, J.P. Nadal, Complexity 7, 55 (2002)Google Scholar
  107. 107.
    P. Chen, S. Redner, J. Phys. A 38 (2005)Google Scholar
  108. 108.
    B. Kozma, A. Barrat, Phys. Rev. E 77, 016102 (2008)ADSGoogle Scholar
  109. 109.
    G. Deffuant, D. Neau, F. Amblard, G. Weisbuch, Adv. Complex Sys. 3, 87 (2000)Google Scholar
  110. 110.
    R. Hegselmann, U. Krause, Comp. Econ. 25, 381 (2005)zbMATHGoogle Scholar
  111. 111.
    E. Ben-Naim, Europhys. Lett. 69, 671 (2005)ADSGoogle Scholar
  112. 112.
    C. Castellano, M. Marsili, A. Vespignani, Phys. Rev. Lett. 85, 3536 (2000)ADSGoogle Scholar
  113. 113.
    F. Vazquez, S. Redner, Europhys. Lett. 78, 18002 (2007)ADSGoogle Scholar
  114. 114.
    J.L. Herrera, M.G. Cosenza, K. Tucci, J.C. González-Avella, Europhys. Lett. 95, 58006 (2011)ADSGoogle Scholar
  115. 115.
    R. Durrett, J.P. Gleeson, A.L. Lloyd, P.J. Mucha, F. Shi, D. Sivakoff, J.E.S. Socolar, C. Varghese, P. Natl. Acad. Sci. (2012)Google Scholar
  116. 116.
    P.L. Krapivsky, S. Redner, Phys. Rev. Lett. 90, 238701 (2003)ADSGoogle Scholar
  117. 117.
    F. Vazquez, V.M. Eguíluz, N. J. Phys. 10, 063011 (2008)Google Scholar
  118. 118.
    G. Demirel, F. Vazquez, G.A. Böhme, T. Gross, Physica D (in press) (2013)Google Scholar
  119. 119.
    G.A. Böhme, T. Gross, Phys. Rev. E 83, 035101 (2011)ADSGoogle Scholar
  120. 120.
    G. Zschaler, G.A. Böhme, M. Seißinger, C. Huepe, T. Gross, Phys. Rev. E 85, 046107 (2012)ADSGoogle Scholar
  121. 121.
    G.A. Böhme, T. Gross, Phys. Rev. E 85, 066117 (2012)ADSGoogle Scholar
  122. 122.
    D.H. Zanette, S. Gil, Physica D 224, 156 (2006)ADSzbMATHMathSciNetGoogle Scholar
  123. 123.
    T.M. Liggett, Stochastic interacting systems: contact, voter, and exclusion processes (Springer Verlag, 1999)Google Scholar
  124. 124.
    G. Demirel, Ph.D. thesis, 2012Google Scholar
  125. 125.
    S.R. Broadbent, J.M. Hammersley, Proc. Cambridge Phil. Soc. 53, 629 (1957)ADSzbMATHMathSciNetGoogle Scholar
  126. 126.
    M.A. Serrano, M. Boguñá, Phys. Rev. Lett. 97, 088701 (2006)ADSGoogle Scholar
  127. 127.
    I. Derényi, G. Palla, T. Vicsek, Phys. Rev. Lett. 94, 160202 (2005)ADSGoogle Scholar
  128. 128.
    D. Achlioptas, R.M. D’Souza, J. Spencer, Science 323, 1453 (2009)ADSzbMATHMathSciNetGoogle Scholar
  129. 129.
    J. Shao, S. Havlin, H.E. Stanley, Phys. Rev. Lett. 103, 018701 (2009)ADSGoogle Scholar
  130. 130.
    D.S. Callaway, M.E.J. Newman, S.H. Strogatz, Duncan J. Watts, Phys. Rev. Lett. 85, 5468 (2000)ADSGoogle Scholar
  131. 131.
    C. Moore, M.E.J. Newman, Phys. Rev. E 62, 7059 (2000)ADSGoogle Scholar
  132. 132.
    D. Juher, J. Ripoll, J. Saldaña, J. Math. Biol., 1 (2012)Google Scholar
  133. 133.
    Y. Wang, D. Chakrabarti, C. Wang, C. Faloutsos, Epidemic spreading in real networks: An eigenvalue viewpoint, Proc. 22nd Int. Symp. on Reliable Distributed Systems (2003)Google Scholar
  134. 134.
    J.C. Kamgang, G. Sallet, Math. Biosci. 213, 1 (2008)zbMATHMathSciNetGoogle Scholar
  135. 135.
    M.E.J. Newman, S.H. Strogatz, D.J. Watts, Phys. Rev. E 64, 026118 (2001)ADSGoogle Scholar
  136. 136.
    R.S. Varga, Matrix iterative analysis (Springer Verlag, 2010)Google Scholar
  137. 137.
    E. Deutsch, Pac. J. Math. 92, 49 (1981)zbMATHMathSciNetGoogle Scholar
  138. 138.
    Y.Y. Ahn, S. Han, H. Kwak, S. Moon, H. Jeong, Analysis of topological characteristics of huge online social networking services, Proc. 16th int. conf. on WorldWideWeb (2007)Google Scholar
  139. 139.
    N. Masuda, S. Redner, J. Stat. Mech. 2011, L02002 (2011)Google Scholar
  140. 140.
    F. Vazquez, S. Redner, J. Phys. A 37, 8479 (2004)ADSzbMATHMathSciNetGoogle Scholar
  141. 141.
    C. Castellano, M.A. Muñoz, R. Pastor-Satorras, Phys. Rev. E 80, 041129 (2009)ADSGoogle Scholar
  142. 142.
    R.L. Lindeman, Ecology 23, 399 (1942)Google Scholar
  143. 143.
    R.T. Paine, Am. Nat. 100, 65 (1966)Google Scholar
  144. 144.
    G.A. Polis, D.R. Strong, Am. Nat. 147, 813 (1996)Google Scholar
  145. 145.
    J.A. Dunne, R.J. Williams, N.D. Martinez, P. Natl. Acad. Sci. 99, 12917 (2002)ADSGoogle Scholar
  146. 146.
    S.L. Pimm, J.H. Lawton, J.E. Cohen, Nature 350, 669 (1991)ADSGoogle Scholar
  147. 147.
    N.D. Martinez, Ecol. Monogr. 61, 367 (1991)Google Scholar
  148. 148.
    G.A. Polis, Am. Nat. 138, 123 (1991)Google Scholar
  149. 149.
    L. Goldwasser, J. Roughgarden, Ecology 74, 1216 (1993)Google Scholar
  150. 150.
    S.J. Hall, D. Raffaelli, J. Anim. Ecol. 60, 823 (1991)Google Scholar
  151. 151.
    K. McCann, A. Hastings, G.R. Huxel, Nature 395, 794 (1998)ADSGoogle Scholar
  152. 152.
    U. Brose, R.J. Williams, N.D. Martinez, Ecol. Lett. 9, 1228 (2006)Google Scholar
  153. 153.
    J. Vandermeer, J. Theor. Biol. 238, 497 (2006)MathSciNetGoogle Scholar
  154. 154.
    T. Gross, L. Rudolf, S.A. Levin, U. Dieckmann, Science 325, 747 (2009)ADSGoogle Scholar
  155. 155.
    B. Kartascheff, C. Guill, B. Drossel, et al., J. Theor. Biol. 259 (2009)Google Scholar
  156. 156.
    R. Levins, Bull. Entomol. Soc. Am. 15, 237 (1969)Google Scholar
  157. 157.
    I. Hanski, Nature 396, 41 (1998)ADSGoogle Scholar
  158. 158.
    P. Pillai, M. Loreau, A. Gonzalez, Theor. Ecol. 3, 223 (2010)Google Scholar
  159. 159.
    P. Pillai, A. Gonzalez, M. Loreau, P. Natl. Acad. Sci. 108, 19293 (2011)ADSGoogle Scholar
  160. 160.
    P. Pillai, A. Gonzalez, M. Loreau, Am. Nat. 179, 204 (2012)Google Scholar
  161. 161.
    F.R. Adler, B. Nuernberger, Theor. Pop. Biol. 45, 41 (1994)zbMATHGoogle Scholar
  162. 162.
    O. Ovaskainen, I. Hanski, Theor. Pop. Biol. 60, 281 (2001)zbMATHGoogle Scholar
  163. 163.
    A.V. Goltsev, S.N. Dorogovtsev, J.G. Oliveira, J.F.F. Mendes, Localization and spreading of diseases in complex networks [arXiv:1202.4411] (2012)
  164. 164.
    C. Castellano, R. Pastor-Satorras, Phys. Rev. Lett. 105, 218701 (2010)ADSGoogle Scholar
  165. 165.
    I. Hanski, O. Ovaskainen, Nature 404, 755 (2000)ADSGoogle Scholar
  166. 166.
    B. Karrer, M.E.J. Newman, Phys. Rev. E 84, 036106 (2011)ADSMathSciNetGoogle Scholar
  167. 167.
    M.E.J. Newman, Phys. Rev. Lett. 95, 108701 (2005)ADSGoogle Scholar
  168. 168.
    N. Masuda, N. Konno, J. Theor. Biol. 243, 64 (2006)MathSciNetGoogle Scholar
  169. 169.
    Y.Y. Ahn, H. Jeong, N. Masuda, J.D. Noh, Phys. Rev. E 74, 066113 (2006)ADSGoogle Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  • Gesa Angelika Böhme
    • 1
  1. 1.Max-Planck-Institute for Physics of Complex SystemsDresdenGermany

Personalised recommendations