The European Physical Journal Special Topics

, Volume 222, Issue 11, pp 3071–3087 | Cite as

Colloidal particles at fluid interfaces: Effective interactions, dynamics and a gravitation–like instability

  • J. Bleibel
  • A. Domínguez
  • M. Oettel
Review Confining Geometries


Colloidal particles of micrometer size usually become irreversibly trapped at fluid interfaces if they are partially wetted by one phase. This opens the chance to create two–dimensional model systems where the effective interactions between the particles are possibly influenced by the presence of the interface to a great extent. We will review recent developments in the quantitive understanding of these effective interactions with a special emphasis on electrostatics and capillarity. Charged colloids of micrometer size at an interface form effective dipoles whose strength sensitively depends on the double layer structure. We discuss the success of modified Poisson–Boltzmann equations with regard to measured colloidal dipole moments. On the other hand, for somewhat larger particles capillary interactions arise which are long–ranged and analogous to two–dimensional screened Newtonian gravity with the capillary length λ as the screening length. For colloidal diameters of around 10 micrometer, the collective effect of these long–ranged capillary interactions will dominate thermal motion and residual, short–ranged repulsions, and results in an instability towards a collapsed state for a finite patch of particles. Such long–ranged interactions with the associated instability are also of interest in other branches of physics, such as self-gravitating fluids in cosmology, two–dimensional vortex flow in hydrodynamics, and bacterial chemotaxis in biology. Starting from the colloidal case we develop and discuss a dynamical “phase diagram” in the temperature and interaction range variables which appears to be of more general scope and applicable also to other systems.


Boltzmann Equation European Physical Journal Special Topic Contact Line Capillary Force Spinodal Decomposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B.J. Park, J.P. Pantina, E.M. Furst, M. Oettel, S. Reynaert, J. Vermant, Langmuir 24, 1686 (2008)CrossRefGoogle Scholar
  2. 2.
    K. Masschaele, B.J. Park, E.M. Furst, J. Fransaer, J. Vermant, Phys. Rev. Lett. 105, 048303 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    B.J. Park, J. Vermant, E.M. Furst, Soft Matter 6, 5237 (2010)Google Scholar
  4. 4.
    A.D. Law, D.M.A. Buzza, T.S. Horozov, Phys. Rev. Lett. 106, 128302 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    A.D. Law, M. Auriol, D. Smith, T.S. Horozov, D.M.A. Buzza, Phys. Rev. Lett. 110, 138301 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    P.A. Kralchevsky, K. Nagayama, Adv. Colloid Interface Sci. 85, 145 (2000)CrossRefGoogle Scholar
  7. 7.
    F. Bresme, M. Oettel, J. Phys.: Condens. Matter 19, 413101 (2007)CrossRefGoogle Scholar
  8. 8.
    M. Oettel, S. Dietrich, Langmuir 24, 1425 (2008)CrossRefGoogle Scholar
  9. 9.
    A. Domínguez, Capillary Forces between Colloidal Particles at Fluid Interfaces, in Structure and Functional Properties of Colloidal Systems, edited by R. Hidalgo-Alvarez (CRC Press, Boca Raton, FL, 2010), p. 31Google Scholar
  10. 10.
    D. Frydel, A. Domínguez, M. Oettel, Phys. Rev. E(R) 77, 020401 (2008)CrossRefGoogle Scholar
  11. 11.
    D. Frydel, S. Dietrich, M. Oettel, Phys. Rev. Lett. 99, 118302 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    A. Shrestha, K. Bohinc, S. May, Langmuir 28, 14301 (2012)CrossRefGoogle Scholar
  13. 13.
    I. Borukhov, D. Andelman, H. Orland, Phys. Rev. Lett. 79, 435 (1997)ADSCrossRefGoogle Scholar
  14. 14.
    A. Abrashkin, D. Andelman, H. Orland, Phys. Rev. Lett. 99, 077801 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    D. Frydel, M. Oettel, Phys. Chem. Chem. Phys. 13, 4109 (2011)CrossRefGoogle Scholar
  16. 16.
    D. Frydel, J. Chem. Phys. 134, 234704 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    M.M. Hatlo, R. van Roij, L. Lue, EPL 97, 28010 (2012)CrossRefGoogle Scholar
  18. 18.
    I. Kalcher, J.C.F. Schulz, J. Dzubiella, Phys. Rev. Lett. 104, 097802 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    D. Frydel, Y. Levin, J. Chem. Phys. 137, 164703 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    K.D. Danov, P.A. Kralchevsky, J. Coll. Interface Science 345, 505 (2010)CrossRefGoogle Scholar
  21. 21.
    K.D. Danov, P.A. Kralchevsky, Adv. Coll. Interface Science 154, 91 (2010)CrossRefGoogle Scholar
  22. 22.
    A. Domínguez, M. Oettel, S. Dietrich, J. Chem. Phys. 128, 114904 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    N. Aubry, P. Singh, Phys. Rev. E 77, 056302 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    N. Aubry, P. Singh, M. Janjua, S. Nudurupati, Proc. Nat. Acad. Sciences USA 105, 3711 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    K. Masschaele, J. Vermant, Soft Matter 7, 10597 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    B. Madivala, J. Fransaer, J. Vermant, Langmuir 25, 2718 (2009)CrossRefGoogle Scholar
  27. 27.
    J.C. Loudet, B. Pouligny, EPL 85, 28003 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    J.C. Loudet, B. Pouligny, Eur. Phys. J. E 34, 76 (2011)CrossRefGoogle Scholar
  29. 29.
    E.P. Lewandowski, M. Cavallaro, Jr., L. Botto, J.C. Bernate, V. Garbin, K.J. Stebe, Langmuir 26, 15142 (2010)CrossRefGoogle Scholar
  30. 30.
    M. Cavallaro Jr., L. Botto, E.P. Lewandowski, M. Wang, K.J. Stebe, Proc. Nat. Acad. Sciences USA 108, 20923 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    L. Botto, L. Yao, R.L. Leheny, K.J. Stebe, Soft Matter 8, 4971 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    L. Botto, E.P. Lewandowski, M. Cavallaro Jr., K.J. Stebe, Soft Matter 8, 9957 (2012)ADSCrossRefGoogle Scholar
  33. 33.
    M. Oettel, A. Domínguez, M. Tasinkevych, S. Dietrich, Eur. Phys. J. E 28, 99 (2009)CrossRefGoogle Scholar
  34. 34.
    L. Yao, L. Botto, M. Cavallaro Jr., B.J. Bleier, V. Garbin, K.J. Stebe, Soft Matter 9, 779 (2013)ADSCrossRefGoogle Scholar
  35. 35.
    J. Guzowski, M. Tasinkevych, S. Dietrich, Eur. Phys. J. E 33, 219 (2010)CrossRefGoogle Scholar
  36. 36.
    J. Guzowski, M. Tasinkevych, S. Dietrich, Phys. Rev. E 84, 031401 (2011)ADSCrossRefGoogle Scholar
  37. 37.
    J. Guzowski, M. Tasinkevych, S. Dietrich, Soft Matter 7, 4189 (2011)ADSCrossRefGoogle Scholar
  38. 38.
    A. Würger, Phys. Rev. E 74, 041402 (2006)MathSciNetADSCrossRefGoogle Scholar
  39. 39.
    D. Ershov, J. Sprakel, J. Appel, M.A. Cohen Stuart, J. van der Guch, Proc. Nat. Acad. Sciences USA 110, 9220 (2013)ADSCrossRefGoogle Scholar
  40. 40.
    A. Vincze, A. Agod, J. Kertész, M. Zrínyi, Z. Hórvölgyi, J. Chem. Phys. 114, 520 (2001)ADSCrossRefGoogle Scholar
  41. 41.
    P. Singh, D.D. Joseph, S.K. Gurupathama, B. Dalala, S. Nudurupatia, Proc. Nat. Acad. Sciences USA 106, 19761 (2009)CrossRefGoogle Scholar
  42. 42.
    J. de Graaf, M. Dijkstra, R. van Roij, J. Chem. Phys. 132, 164902 (2010)ADSCrossRefGoogle Scholar
  43. 43.
    N. Chatterjee, S. Lapin, M. Flury, Environ. Sci. Technol. 46, 4411 (2012)ADSCrossRefGoogle Scholar
  44. 44.
    A. Domí nguez, M. Oettel, S. Dietrich, Phys. Rev. E 82, 011402 (2010)ADSGoogle Scholar
  45. 45.
    J. Bleibel, A. Domínguez, M. Oettel, S. Dietrich, Eur. Phys. J. E 34, 125 (2011)CrossRefGoogle Scholar
  46. 46.
    J. Bleibel, S. Dietrich, A. Domínguez, M. Oettel, Phys. Rev. Lett. 107, 128302 (2011)ADSCrossRefGoogle Scholar
  47. 47.
    P.-H. Chavanis, C. Sire, Physica A 387, 4033 (2008)ADSCrossRefGoogle Scholar
  48. 48.
    R.W. Hockney, J.W. Eastwood, Computer Simulation Using Particles (Hilger, Bristol, 1988)Google Scholar
  49. 49.
    M. Deserno, C. Holm, J. Chem. Phys. 109, 7678 (1998)ADSCrossRefGoogle Scholar
  50. 50.
    J.F. Brady, G. Bossis, Ann. Rev. Fluid Mech. 20, 111 (1988)ADSCrossRefGoogle Scholar
  51. 51.
    J. Bleibel, J. Phys. A: Math. Theor. 45, 225002 (2012)MathSciNetADSCrossRefGoogle Scholar
  52. 52.
    J. Bleibel, A. Domínguez, F. Günther, J. Harting, M. Oettel, Hydrodynamic interactions induce anomalous diffusion under partial confinement [arXiv:1305.3715] (2013)

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  1. 1.Institut für Angewandte PhysikUniversität TübingenTübingenGermany
  2. 2.Max-Planck-Institut für intelligente SystemeStuttgartGermany
  3. 3.Física TeóricaUniversidad de SevillaSevillaSpain

Personalised recommendations