Advertisement

The European Physical Journal Special Topics

, Volume 222, Issue 11, pp 2973–2993 | Cite as

Effects of boundaries on structure formation in low-dimensional colloid model systems near the liquid-solid-transition in equilibrium and in external fields and under shear

  • S. Deutschländer
  • K. Franzrahe
  • B. Heinze
  • P. Henseler
  • P. Keim
  • N. Schwierz
  • U. Siems
  • P. Virnau
  • D. Wilms
  • K. Binder
  • G. Maret
  • P. Nielaba
Review Laser–Optical and Magnetic Fields

Abstract

A brief review focusing on low-dimensional colloidal model systems is given describing both simulation studies and complementary experiments, elucidating the interplay between phase behavior, geometric structures, and transport phenomena. These studies address the response of these very soft colloidal systems to perturbations such as uniform or uniaxial compression, laser fields, randomly quenched disorder, and shear deformation caused by moving boundaries.

Binary hard-disk mixtures are studied by Monte Carlo simulation, to investigate ordering on surfaces or in monolayers, modeling the effect of a substrate by an external potential. By weak external laser fields the miscibility of the mixture can be controlled, and the underlying mechanism (laser-induced demixing) is clarified. The stability of various space-filling structures is discussed only for the case where no laser fields are present.Hard spheres interacting with repulsive screened Coulomb or dipolar interaction confined in 2D and 3D narrow constrictions are investigated by Brownian Dynamics simulation. With respect to the structural behavior, it is found that layers or planes throughout the microchannel are formed. The arrangement of the particles is disturbed by diffusion, and can also be modified by an external driving force causing a density gradient along the channel. Then the number of layers or planes gets reduced, adjusting to the density gradient, and this self-organized change of order also shows up in the particle velocities.

The experimental work that is reviewed here addresses dipolar colloidal particles confined by gravity on a solid substrate on which a set of pinning sites has been randomly distributed. The dynamics of the system is studied by tracking the trajectories of individual particles, and it is found that the mean square displacements of particles that are nearest neighbors of pinned particles are strongly affected by these defects. The influence of the pinning sites on the order and microscopic mechanism of phase transitions in two dimensions is investigated.

Keywords

Soliton European Physical Journal Special Topic Colloidal Particle Colloidal Dispersion Mean Square Displacement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Franzrahe, P. Nielaba, S. Sengupta, Phys. Rev. E 82, 016112 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    K. Franzrahe, P. Keim, G. Maret, P. Nielaba, S. Sengupta, Phys. Rev. E 78, 026106 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    K. Franzrahe, P. Nielaba, Phys. Rev. E 79, 051505 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    K. Franzrahe, P. Nielaba, Phys. Rev. E 76, 061503 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    F. Bürzle, P. Nielaba, Phys. Rev. E 76, 051112 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    W. Strepp, S. Sengupta, P. Nielaba, Phys. Rev. E 63, 046106 (2001)ADSCrossRefGoogle Scholar
  7. 7.
    W. Strepp, S. Sengupta, P. Nielaba, Phys. Rev. E 66, 056109 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    D.R. Nelson, in Phase Transitions and Critical Phenomena, edited by C. Domb and J.L. Lebowitz, Vol. 7 (Academic, London, 1983), p. 1Google Scholar
  9. 9.
    A. Ricci, P. Nielaba, S. Sengupta, K. Binder, Phys. Rev. E 74, 010404(R) (2006)ADSCrossRefGoogle Scholar
  10. 10.
    A. Ricci, P. Nielaba, S. Sengupta, K. Binder, Phys. Rev. E 75, 011405 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    K. Binder, Y.-H. Chui, P. Nielaba, A. Ricci, S. Sengupta, in Nanophenomena at Surfaces: Fundamentals of Exotic Condensed Matter Properties, edited by M. Mihailov (Springer, Berlin, 2011), p. 1Google Scholar
  12. 12.
    D. Wilms, P. Virnau, I.K. Snook, K. Binder, Phys. Rev. B 86, 051404 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    K. Bagchi, H.C. Andersen, W. Swope, Phys. Rev. E 53, 3794 (1996)ADSCrossRefGoogle Scholar
  14. 14.
    V.J. Emery, J.D. Axe, Phys. Rev. Lett. 40, 1507 (1978)ADSCrossRefGoogle Scholar
  15. 15.
    Y.-H. Chui, S. Sengupta, K. Binder, Europhys. Lett. 83, 58004 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    Y.-H. Chui, S. Sengupta, I.K. Snook, K. Binder, J. Chem. Phys. 132, 074701 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    Y.-H. Chui, S. Sengupta, I.K. Snook, K. Binder, Phys. Rev. E 81, 020403(R) (2010)ADSCrossRefGoogle Scholar
  18. 18.
    D. Wilms, N.B. Wilding, K. Binder, Phys. Rev. E 85, 056703 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    M. Braun, Y.S. Kivshar, The Frenkel-Kontorova Model: Concepts, Methods, and Applications (Springer, Berlin, 2004)Google Scholar
  20. 20.
    W.C. Poon, P.N. Pusey, in Observation, Prediction, and Simulation of Phase Transitions in Complex Fluids, edited by M. Baus and L.F. Rull (Kluwer Acad. Publ., Dordrecht, 1995), p. 9Google Scholar
  21. 21.
    W. Goetze, J. Phys.: Cond. Mat. 11, A1 (1999)ADSCrossRefGoogle Scholar
  22. 22.
    K. Binder, W. Kob, Glassy Materials and Disorderd Solids. An Introduction to Their Statistical Mechanic, Revised Edition (World Scientific, Singapore, 2011)Google Scholar
  23. 23.
  24. 24.
    G.E. Murch, in Phase Transformations in Materials, edited by G. Kostorz (Wiley-VCH, Weinheim, 2001), p. 192Google Scholar
  25. 25.
    D. Wilms, P. Virnau, S. Sengupta, K. Binder, Phys. Rev. E 85, 061406 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    D. Wilms, P. Virnau, K. Binder, Molecular Physics (in press)Google Scholar
  27. 27.
    B.N.J. Persson, E. Tosatti (eds.), Physics of Sliding Friction (Kluwer, Dordrecht, 1996)Google Scholar
  28. 28.
    Th. Bohlein, J. Mikhael, C. Bechinger, Nature Mater. 11, 126 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    L. Lue, L.V. Woodcock, Mol. Phys. 96, 1435 (1999)ADSCrossRefGoogle Scholar
  30. 30.
    C.N. Likos, C.L. Henley, Phil. Mag. B 68, 85 (1993)ADSCrossRefGoogle Scholar
  31. 31.
    A. Chowdhury, B.J. Ackerson, Phys. Rev. Lett. 55, 833 (1985)ADSCrossRefGoogle Scholar
  32. 32.
    Q.H. Wei, C. Bechinger, D. Rudhardt, P. Leiderer, Phys. Rev. Lett. 81, 2606 (1998)ADSCrossRefGoogle Scholar
  33. 33.
    J. Chakrabarti, H.R. Krishnamurthy, A.K. Sood, S. Sengupta, Phys. Rev. Lett. 75, 2232 (1995)ADSCrossRefGoogle Scholar
  34. 34.
    P. Chaudhuri, C. Das, C. Dasgupta, H.R. Krishnamurthy, A.K. Sood, Phys. Rev. E 72, 061404 (2005)ADSCrossRefGoogle Scholar
  35. 35.
    J. Chakrabarti, H.R. Krishnamurthy, A.K. Sood, Phys. Rev. Lett. 73, 2923 (1994)ADSCrossRefGoogle Scholar
  36. 36.
    E. Frey, D.R. Nelson, L. Radzihovsky, Phys. Rev. Lett. 83, 2977 (1999)ADSCrossRefGoogle Scholar
  37. 37.
    L. Radzihovsky, E. Frey, D.R. Nelson, Phys. Rev. E 63, 031503 (2001)ADSCrossRefGoogle Scholar
  38. 38.
    D. Wilms, S. Deutschländer, U. Siems, K. Franzrahe, P. Henseler, P. Keim, N. Schwierz, P. Virnau, K. Binder, G. Maret, P. Nielaba, J. Phys.: Cond. Mat. 24, 464119 (2012)ADSCrossRefGoogle Scholar
  39. 39.
    D. Helbing, P. Molnar, I. Farkas, K. Bolay, Environ. Plann. B Plann. Des. 28, 361 (2001)CrossRefGoogle Scholar
  40. 40.
    T.M. Squires, S.R. Quake, Rev. Mod. Phys. 77, 977 (2005)ADSCrossRefGoogle Scholar
  41. 41.
    R. Roth, D. Gillespie, Phys. Rev. Lett. 95, 247801 (2005)ADSCrossRefGoogle Scholar
  42. 42.
    H. Löwen, J. Phys.: Condensed Matter 13, R415 (2005)CrossRefGoogle Scholar
  43. 43.
    M. Rex, H. Löwen, C.N. Likos, Phys. Rev. E 72, 021404 (2005)ADSCrossRefGoogle Scholar
  44. 44.
    M. Rex, H. Löwen, Phys. Rev. E 75, 051402 (2007)ADSCrossRefGoogle Scholar
  45. 45.
    M. Rex, H. Löwen, Eur. Phys. J. E 26, 143 (2008)CrossRefGoogle Scholar
  46. 46.
    J. Chakrabarti, J. Dzubiella, H. Löwen, Phys. Rev. E 70, 012401 (2004)ADSCrossRefGoogle Scholar
  47. 47.
    J. Dzubiella, H. Löwen, J. Phys.: Condens. Matter 14, 9383 (2002)ADSCrossRefGoogle Scholar
  48. 48.
    J. Chakrabarti, J. Dzubiella, H. Löwen, EPL 61, 415 (2003)ADSCrossRefGoogle Scholar
  49. 49.
    L. Isa, R. Besseling, W.C.K. Poon, Phys. Rev. Lett. 98, 198305 (2007)ADSCrossRefGoogle Scholar
  50. 50.
    L. Isa, R. Besseling, A.N. Morozov, W.C.K. Poon, Phys. Rev. Lett. 102, 058302 (2009)ADSCrossRefGoogle Scholar
  51. 51.
    T. Vissers, A. van Blaaderen, A. Imhof, Phys. Rev. Lett. 106, 228303 (2011)ADSCrossRefGoogle Scholar
  52. 52.
    T. Vissers, A. Wysocki, M. Rex, H. Löwen, C.P. Royall, A. Imhof, A. van Blaaderen, Soft Matter 7, 2352 (2011)ADSCrossRefGoogle Scholar
  53. 53.
    P. Ballesta, G. Petekidis, L. Isa, W.C.K. Poon, R. Besseling, J. Rheology 56, 1005 (2012)ADSCrossRefGoogle Scholar
  54. 54.
    M.E. Leunissen, C.G. Christova, A.P. Hynninen, C.P. Royall, A.I. Campbell, A. Imhof, M. Dijkstra, R. v. Roij, A. v. Blaaderen, Nature 437, 235 (2005)ADSCrossRefGoogle Scholar
  55. 55.
    K.R. Sütterlin, A. Wysocki, A.V. Ivlev, C. Räth, H.M. Thomas, M. Rubin-Zuzic, W.J. Goedheer, V.E. Fortov, A.M. Lipaev, V.I. Molotkov, O.F. Petrov, G.E. Morfill, H. Löwen, Phys. Rev. Lett. 102, 085003 (2009)ADSCrossRefGoogle Scholar
  56. 56.
    B. Schmittmann, R.K.P. Zia, Phase Transition and Critical Phenomena, Vol. 17 (Academic, 1995)Google Scholar
  57. 57.
    N. Schwierz, P. Nielaba, Phys. Rev. E 82, 031401 (2010)ADSCrossRefGoogle Scholar
  58. 58.
    D.L. Ermak, J. Chem. Phys. 62, 4189 (1975)ADSCrossRefGoogle Scholar
  59. 59.
    R. Haghgooie, P.S. Doyle, Phys. Rev. E 70, 061408 (2004)ADSCrossRefGoogle Scholar
  60. 60.
    G. Piacente, F.M. Peeters, Phys. Rev. B 72, 205208 (2005)ADSCrossRefGoogle Scholar
  61. 61.
    M. Köppl, P. Henseler, A. Erbe, P. Nielaba, P. Leiderer, Phys. Rev. Lett. 97, 208302 (2006)ADSCrossRefGoogle Scholar
  62. 62.
    P. Henseler, A. Erbe, M. Köppl, P. Leiderer, P. Nielaba, Phys. Rev. E 81, 041402 (2010)ADSCrossRefGoogle Scholar
  63. 63.
    P.J. Steinhardt, D.R. Nelson, M. Ronchetti, Phys. Rev. B 28, 784 (1983)ADSCrossRefGoogle Scholar
  64. 64.
    U. Siems, Dissertation, U. Konstanz (in preparation)Google Scholar
  65. 65.
    B. Heinze, Diploma thesis, U Konstanz, 2013Google Scholar
  66. 66.
    Q.H. Wei, C. Bechinger, P. Leiderer, Science 287, 625 (2000)ADSCrossRefGoogle Scholar
  67. 67.
    U. Siems, C. Kreuter, A. Erbe, N. Schwierz, S. Sengupta, P. Leiderer, P. Nielaba, Nature – Sci. Rep. 2, 1015 (2012)ADSGoogle Scholar
  68. 68.
    D.R. Nelson, Phys. Rev. B 27, 2902 (1983)ADSCrossRefGoogle Scholar
  69. 69.
    M.-C. Cha, H.A. Fertig, Phys. Rev. Lett. 74, 4867 (1995)ADSCrossRefGoogle Scholar
  70. 70.
    D. Carpentier, P. Le Doussal, Phys. Rev. Lett. 81, 1881 (1998)ADSCrossRefGoogle Scholar
  71. 71.
    A.C. Shi, A.J. Berlinsky, Phys. Rev. B 47, 652 (1993)ADSCrossRefGoogle Scholar
  72. 72.
    Z.-X. Cai, S. Sen, D.O. Welch, Phys. Rev. B 51, 15873 (1995)ADSCrossRefGoogle Scholar
  73. 73.
    S. Herrera-Velarde, H.H. von Grünberg, Soft Matter 5, 391 (2009)ADSCrossRefGoogle Scholar
  74. 74.
    R.E. Kusner, J.A. Mann, A.J. Dahm, Phys. Rev. B 49, 9190 (1994)ADSCrossRefGoogle Scholar
  75. 75.
    A. Pertsinidis, X.S. Ling, Phys. Rev. Lett. 100, 028303 (2008)ADSCrossRefGoogle Scholar
  76. 76.
    P. Yunker, Z. Zhang, A.G. Yodh, Phys. Rev. Lett. 104, 015701 (2010)ADSCrossRefGoogle Scholar
  77. 77.
    S. Deutschländer, T. Horn, H. Löwen, G. Maret, P. Keim, Phys. Rev. Lett. 111, 098301 (2013)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  • S. Deutschländer
    • 1
  • K. Franzrahe
    • 1
  • B. Heinze
    • 1
  • P. Henseler
    • 1
  • P. Keim
    • 1
  • N. Schwierz
    • 1
  • U. Siems
    • 1
  • P. Virnau
    • 2
  • D. Wilms
    • 2
    • 3
  • K. Binder
    • 2
  • G. Maret
    • 1
  • P. Nielaba
    • 1
  1. 1.Physics DepartmentUniversity of KonstanzKonstanzGermany
  2. 2.Institut für PhysikJohannes Gutenberg-Universität MainzMainzGermany
  3. 3.Graduate School Materials Science in MainzMainzGermany

Personalised recommendations