Advertisement

The European Physical Journal Special Topics

, Volume 222, Issue 11, pp 2961–2972 | Cite as

Two-dimensional colloidal mixtures in magnetic and gravitational fields

  • H. Löwen
  • T. Horn
  • T. Neuhaus
  • B. ten Hagen
Review Laser–Optical and Magnetic Fields

Abstract

This mini-review is concerned with two-dimensional colloidal mixtures exposed to various kinds of external fields. By a magnetic field perpendicular to the plane, dipole moments are induced in paramagnetic particles which give rise to repulsive interactions leading to complex crystalline alloys in the composition-asymmetry diagram. A quench in the magnetic field induces complex crystal nucleation scenarios. If exposed to a gravitational field, these mixtures exhibit a brazil–nut effect and show a boundary layering which is explained in terms of a depletion bubble picture. The latter persists for time-dependent gravity (“colloidal shaking”). Finally, we summarize crystallization effects when the second species is frozen in a disordered matrix which provides obstacles for the crystallizing component.

Keywords

Binary Mixture Monte Carlo European Physical Journal Special Topic Colloidal Dispersion Magnetic Dipole Moment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Ivlev, H. Löwen, G. Morfill, C.P. Royall, Complex Plasmas and Colloidal Dispersions: Particle-resolved Studies of Classical Liquids and Solids, Series in Soft Condensed Matter (World Scientific, 2012), ISBN: 9789814350068Google Scholar
  2. 2.
    H. Löwen, J. Phys.: Condens. Matter 13, R415 (2001)CrossRefGoogle Scholar
  3. 3.
    H. Löwen, J. Phys.: Condens. Matter 21, 474203 (2009)CrossRefGoogle Scholar
  4. 4.
    K. Zahn, J. M. Mendez-Alcaraz, G. Maret, Phys. Rev. Lett. 79, 175 (1997)ADSCrossRefGoogle Scholar
  5. 5.
    K. Zahn, G. Maret, Curr. Opin. Colloid Interface Sci. 4, 60 (1999)CrossRefGoogle Scholar
  6. 6.
    H. Löwen, R. Messina, N. Hoffmann, C.N. Likos, C. Eisenmann, P. Keim, U. Gasser, G. Maret, R. Goldberg, T. Palberg, J. Phys.: Condens. Matter 17, S3379 (2005)CrossRefGoogle Scholar
  7. 7.
    P. Dillmann, G. Maret, P. Keim, Eur. Phys. J. Special Topics 222(11), 2941 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    V.A. Froltsov, R. Blaak, C.N. Likos, H. Löwen, Phys. Rev. E 68, 061406 (2003)ADSCrossRefGoogle Scholar
  9. 9.
    K. Zahn, R. Lenke, G. Maret, Phys. Rev. Lett. 82, 2721 (1999)ADSCrossRefGoogle Scholar
  10. 10.
    H.H. von Grünberg, P. Keim, K. Zahn, G. Maret, Phys. Rev. Lett. 93, 255703 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    P. Keim, G. Maret, H.H. von Grünberg, Phys. Rev. E 75, 031402 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    C. Eisenmann, U. Gasser, P. Keim, G. Maret, H.H. von Grünberg, Phys. Rev. Lett. 95, 185502 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    P. Keim, G. Maret, U. Herz, H.H. von Grünberg, Phys. Rev. Lett. 92, 215504 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    C. Eisenmann, P. Keim, U. Gasser, G. Maret, J. Phys.: Condens. Matter 16, S4095 (2004)ADSCrossRefGoogle Scholar
  15. 15.
    H. Löwen, Phys. Rep. 237, 249 (1994)ADSCrossRefGoogle Scholar
  16. 16.
    S. van Teeffelen, C.N. Likos, H. Löwen, Phys. Rev. Lett. 100, 108302 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    S. van Teeffelen, R. Backofen, A. Voigt, H. Löwen, Phys. Rev. E 79, 051404 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    V.A. Froltsov, C.N. Likos, H. Löwen, C. Eisenmann, U. Gasser, P. Keim, G. Maret, Phys. Rev. E 71, 031404 (2005)ADSCrossRefGoogle Scholar
  19. 19.
    C. Eisenmann, U. Gasser, P. Keim, G. Maret, Phys. Rev. Lett. 93, 105702 (2004)ADSCrossRefGoogle Scholar
  20. 20.
    H. König, R. Hund, K. Zahn, G. Maret, Eur. Phys. J. E 18, 287 (2005)CrossRefGoogle Scholar
  21. 21.
    M. Kollmann, R. Hund, B. Rinn, G. Nägele, K. Zahn, H. König, G. Maret, R. Klein, J.K.G. Dhont, Europhys. Lett. 58, 919 (2002)ADSCrossRefGoogle Scholar
  22. 22.
    N. Hoffmann, F. Ebert, C. N. Likos, H. Löwen, G. Maret, Phys. Rev. Lett. 97, 078301 (2006)ADSCrossRefGoogle Scholar
  23. 23.
    N. Hoffmann, C.N. Likos, H. Löwen, J. Phys.: Condens. Matter 18, 10193 (2006)ADSCrossRefGoogle Scholar
  24. 24.
    J.-P. Hansen, I.R. MacDonald, Theory of Simple Liquids (Academic, London, 2006)Google Scholar
  25. 25.
    H. Löwen, E.C. Oğuz, L. Assoud, R. Messina, Adv. Chem. Phys. 148, 225 (2012)Google Scholar
  26. 26.
    L. Assoud, F. Ebert, P. Keim, R. Messina, G. Maret, H. Löwen, J. Phys.: Condens. Matter 21, 464114 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    L. Assoud, F. Ebert, P. Keim, R. Messina, G. Maret, H. Löwen, Phys. Rev. Lett. 102, 238301 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    F. Ebert, P. Keim, G. Maret, Eur. Phys. J. E 26, 161 (2008)CrossRefGoogle Scholar
  29. 29.
    H. König, Europhys. Lett. 71, 838 (2005)ADSCrossRefGoogle Scholar
  30. 30.
    L. Assoud, R. Messina, H. Löwen, Europhys. Lett. 80, 48001 (2007)ADSCrossRefGoogle Scholar
  31. 31.
    J. Fornleitner, F.F. Lo Verso, G. Kahl, C. N. Likos, Soft Matter 4, 480 (2008)ADSCrossRefGoogle Scholar
  32. 32.
    J. Fornleitner, F. Lo Verso, G. Kahl, C.N. Likos, Langmuir 25, 7836 (2009)CrossRefGoogle Scholar
  33. 33.
    J. Fornleitner, G. Kahl, C.N. Likos, Phys. Rev. E 81, 060401 (2010)ADSCrossRefGoogle Scholar
  34. 34.
    A. Chremos, C.N. Likos, J. Phys. Chem. B 113, 12316 (2009)CrossRefGoogle Scholar
  35. 35.
    B. Lonetti, M. Camargo, J. Stellbrink, C. N. Likos, E. Zaccarelli, L. Willner, P. Lindner, D. Richter, Phys. Rev. Lett. 106, 228301 (2011)ADSCrossRefGoogle Scholar
  36. 36.
    P. Dillmann, G. Maret, P. Keim, J. Phys.: Condens. Matter 20, 404216 (2008)CrossRefGoogle Scholar
  37. 37.
    A. Chowdhury, B.J. Ackerson, N.A. Clark, Phys. Rev. Lett. 55, 833 (1985)ADSCrossRefGoogle Scholar
  38. 38.
    M. Bayer, J.M. Brader, F. Ebert, M. Fuchs, E. Lange, G. Maret, R. Schilling, M. Sperl, J.P. Wittmer, Phys. Rev. E 76, 011508 (2007)MathSciNetADSCrossRefGoogle Scholar
  39. 39.
    T. Hamanaka, A. Onuki, Phys. Rev. E 75, 041503 (2007)ADSCrossRefGoogle Scholar
  40. 40.
    A. Widmer-Cooper, P. Harrowell, Phys. Rev. Lett. 96, 185701 (2006)ADSCrossRefGoogle Scholar
  41. 41.
    T. Kawasaki, T. Araki, H. Tanaka, Phys. Rev. Lett. 99, 215701 (2007)ADSCrossRefGoogle Scholar
  42. 42.
    L. Assoud, R. Messina, H. Löwen, Mol. Phys. 109, 1385 (2011)ADSCrossRefGoogle Scholar
  43. 43.
    T. Kruppa, T. Neuhaus, R. Messina, H. Löwen, J. Chem. Phys. 136, 134106 (2012)ADSCrossRefGoogle Scholar
  44. 44.
    A. Esztermann, H. Löwen, Europhys. Lett. 68, 120 (2004)ADSCrossRefGoogle Scholar
  45. 45.
    S. Deutschländer, T. Horn, H. Löwen, G. Maret, P. Keim, Phys. Rev. Lett. 111, 098301 (2013)ADSCrossRefGoogle Scholar
  46. 46.
    B. Halperin, D.R. Nelson, Phys. Rev. Lett. 41, 121 (1978)MathSciNetADSCrossRefGoogle Scholar
  47. 47.
    A.P. Young, Phys. Rev. B 19, 1855 (1979)ADSCrossRefGoogle Scholar
  48. 48.
    K. Zahn, G. Maret, Phys. Rev. Lett. 85, 3656 (2000)ADSCrossRefGoogle Scholar
  49. 49.
    K.J. Strandburg, Rev. Mod. Phys. 60, 161 (1988)ADSCrossRefGoogle Scholar
  50. 50.
    J.M. Kosterlitz, D.J. Thouless, J. Phys. C 6, 1181 (1973)ADSCrossRefGoogle Scholar
  51. 51.
    D.R. Nelson, Phase Transition and Critical Phenomena (Academic Press, London, 1983)Google Scholar
  52. 52.
    R. Blaak, S. Auer, D. Frenkel, H. Löwen, Phys. Rev. Lett. 93, 068303 (2004)ADSCrossRefGoogle Scholar
  53. 53.
    A. Wysocki, H. Löwen, J. Phys.: Condens. Matter 23, 284117 (2011)CrossRefGoogle Scholar
  54. 54.
    B. Cichocki, M.L. Ekiel-Jezewska, G. Nägele, E. Wajnryb, Europhys. Lett. 67, 383 (2004)ADSCrossRefGoogle Scholar
  55. 55.
    A. Wysocki, C. Raeth, A.V. Ivlev, R.K. Sütterlin, H.M. Thomas, S.A. Khrapak, S.K. Zhdanov, V.E. Fortov, A.M. Lipaev, V.I. Molotkov, O.F. Petrov, H. Löwen, G.E. Morfill, Phys. Rev. Lett. 105, 045001 (2010)ADSCrossRefGoogle Scholar
  56. 56.
    J. Dzubiella, G.P. Hoffmann, H. Löwen, Phys. Rev. E 65, 021402 (2002)ADSCrossRefGoogle Scholar
  57. 57.
    H. Löwen, Soft Matter 6, 3133 (2010)ADSCrossRefGoogle Scholar
  58. 58.
    T. Glanz, H. Löwen, J. Phys.: Condens. Matter 24, 464114 (2012)ADSCrossRefGoogle Scholar
  59. 59.
    M. Kohl, A.V. Ivlev, P. Brandt, G.E. Morfill, H. Löwen, J. Phys.: Condens. Matter 24, 464115 (2012)ADSCrossRefGoogle Scholar
  60. 60.
    R. Bubeck, P. Leiderer, C. Bechinger, Europhys. Lett. 60, 474 (2002)ADSCrossRefGoogle Scholar
  61. 61.
    K. Mangold, J. Birk, P. Leiderer, C. Bechinger, Phys. Chem. Chem. Phys. 6, 1623 (2004)CrossRefGoogle Scholar
  62. 62.
    Z.T. Nemeth, H. Löwen, J. Phys.: Condens. Matter 10, 6189 (1998)ADSCrossRefGoogle Scholar
  63. 63.
    Z.T. Nemeth, H. Löwen, Phys. Rev. E 59, 6824 (1999)ADSCrossRefGoogle Scholar
  64. 64.
    A. Nikoubashman, C.N. Likos, J. Chem. Phys. 133, 074901 (2010)ADSCrossRefGoogle Scholar
  65. 65.
    T. Neuhaus, M. Marechal, M. Schmiedeberg, H. Löwen, Phys. Rev. Lett. 110, 118301 (2013)ADSCrossRefGoogle Scholar
  66. 66.
    R. Dreyfus, J. Baudry, M.L. Roper, M. Fermigier, H.A. Stone, J. Bibette, Nature 437, 862 (2005)ADSCrossRefGoogle Scholar
  67. 67.
    B. ten Hagen, S. van Teeffelen, H. Löwen, J. Phys.: Condens. Matter 23, 194119 (2011)ADSCrossRefGoogle Scholar
  68. 68.
    X. Zheng, B. ten Hagen, A. Kaiser, M. Wu, H. Cui, Z. Silber-Li, H. Löwen, Phys. Rev. E 88, 032304 (2013)ADSCrossRefGoogle Scholar
  69. 69.
    B. ten Hagen, R. Wittkowski, H. Löwen, Phys. Rev. E 84, 031105 (2011)ADSCrossRefGoogle Scholar
  70. 70.
    A.M. Menzel, H. Löwen, Phys. Rev. Lett. 110, 055702 (2013)ADSCrossRefGoogle Scholar
  71. 71.
    J. Bialké, T. Speck, H. Löwen, Phys. Rev. Lett. 108, 168301 (2012)ADSCrossRefGoogle Scholar
  72. 72.
    F. Kümmel, B. ten Hagen, R. Wittkowski, I. Buttinoni, R. Eichhorn, G. Volpe, H. Löwen, C. Bechinger, Phys. Rev. Lett. 110, 198302 (2013)ADSCrossRefGoogle Scholar
  73. 73.
    I. Buttinoni, J. Bialké, F. Kümmel, H. Löwen, C. Bechinger, T. Speck, Phys. Rev. Lett. 110, 238301 (2013)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  • H. Löwen
    • 1
  • T. Horn
    • 1
  • T. Neuhaus
    • 1
  • B. ten Hagen
    • 1
  1. 1.Institut für Theoretische Physik II: Weiche MaterieHeinrich-Heine-Universität DüsseldorfDüsseldorfGermany

Personalised recommendations