Advertisement

The European Physical Journal Special Topics

, Volume 222, Issue 11, pp 2941–2959 | Cite as

Two-dimensional colloidal systems in time-dependent magnetic fields

How to define crystallinity in 2D on a local scale
  • Patrick Dillmann
  • Georg Maret
  • Peter Keim
Review Laser–Optical and Magnetic Fields

Abstract

We use super-paramagnetic colloidal particles confined by gravitation to a flat water-air interface as a model system to study the non-equilibrium liquid-solid phase transition in two dimensions. The system temperature is adjustable by changing the strength of an external magnetic field perpendicular to the water-air interface. Increasing the magnetic field on a timescale of milliseconds quenches the liquid to a strongly super-cooled state. If the system is cooled down out of equilibrium the solidification differs drastically from the equilibrium melting and freezing scenario as no hexatic phase is observable. The system solidifies to a polycrystalline structure with many grains of different orientations. Since the local closed packed order in two dimensions is sixfold, in both the fluid and the crystalline state, sensitive measures have to be developed. In the present manuscript we compare different methods to identify crystalline cluster locally and motivate the threshold values. Those are chosen in comparison with the isotropic fluid on one hand and large mono-crystals in thermal equilibrium on the other hand. With the given criteria for crystalline cluster the cluster are found not to be circular and fractal dimensions of the grains are given.

Keywords

Fractal Dimension European Physical Journal Special Topic Bond Order Colloidal Dispersion Orientational Order 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.E. Peierls, Ann. Inst. Henri Poincare 5, 177 (1935)MathSciNetzbMATHGoogle Scholar
  2. 2.
    N.D. Mermin, Phys. Rev. 176, 250 (1968)ADSCrossRefGoogle Scholar
  3. 3.
    N.D. Mermin, H. Wagner, Phys. Rev. Lett. 17, 1133 (1966)ADSCrossRefGoogle Scholar
  4. 4.
    V.M. Bedanov, G.V. Gadiyak, Y.E. Lozovik, Phys. Lett. A 109, 289 (1985)ADSCrossRefGoogle Scholar
  5. 5.
    X.H. Zheng, J.C. Earnshaw, Europhys. Lett. 41, 635 (1998)ADSCrossRefGoogle Scholar
  6. 6.
    S.T. Chui, Phys. Rev. Lett 48, 933 (1982)ADSCrossRefGoogle Scholar
  7. 7.
    S.T. Chui, Phys. Rev. B 28, 178 (1983)ADSCrossRefGoogle Scholar
  8. 8.
    H. Kleinert, Phys. Lett. A 95, 381 (1983)MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    M.A. Glaser, N.A. Clark, Adv. Chem. Phys. 83, 543 (1993)CrossRefGoogle Scholar
  10. 10.
    Y. Lansac, M.A. Glaser, N.A. Clark, Phys. Rev. E 73, 041501 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    J.M. Kosterlitz, D.J. Thouless, J. Phys. C 5, 124 (1972)ADSCrossRefGoogle Scholar
  12. 12.
    J.M. Kosterlitz, D.J. Thouless, J. Phys. C 6, 1181 (1973)ADSCrossRefGoogle Scholar
  13. 13.
    D.R. Nelson, J.M. Kosterlitz, Phys. Rev. Lett. 39, 2101 (1977)ADSCrossRefGoogle Scholar
  14. 14.
    D.J. Thouless, J. Phys. C 11, 189 (1978)MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    B.I. Halperin, D.R. Nelson, Phys. Rev. Lett. 41, 121 (1978)MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    D.R. Nelson, B.I. Halperin, Phys. Rev. B. 19, 2457 (1979)ADSCrossRefGoogle Scholar
  17. 17.
    A.P. Young, Phys. Rev. B 19, 1855 (1979)ADSCrossRefGoogle Scholar
  18. 18.
    B.J. Alder, T.E. Wainwright, J. Chem. Phys. 27, 1208 (1957)ADSCrossRefGoogle Scholar
  19. 19.
    K.J. Strandburg, Rev. Mod. Phys. 60, 161 (1988)ADSCrossRefGoogle Scholar
  20. 20.
    A. Jaster, Europhy. Lett. 42, 227 (1998)ADSCrossRefGoogle Scholar
  21. 21.
    J.J. Alonso, J.F. Fernandez, Phys. Rev. E 59, 2659 (1999)ADSCrossRefGoogle Scholar
  22. 22.
    S. Sengupta, P. Nielaba, K. Binder, Phys. Rev. E 61, 6294 (2000)ADSCrossRefGoogle Scholar
  23. 23.
    K. Binder, S. Sengupta, P. Nielaba, J. Phys. Cond. Mat. 14, 2323 (2002)ADSCrossRefGoogle Scholar
  24. 24.
    C.H. Mak, Phys. Rev. E 73, 065104 (2006)ADSCrossRefGoogle Scholar
  25. 25.
    S.Z. Lin, B. Zheng, S. Trimper, Phys. Rev. E 73, 066106 (2006)ADSCrossRefGoogle Scholar
  26. 26.
    E.P. Bernard, W. Krauth, Phys. Rev. Lett. 107, 155704 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    C.A. Murray, D.H. Van Winkle, Phys. Rev. Lett. 58, 1200 (1987)ADSCrossRefGoogle Scholar
  28. 28.
    Y. Tang, A.J. Armstrong, R.C. Mockler, W.J. Osullivan, Phys. Rev. Lett. 62, 2401 (1989)ADSCrossRefGoogle Scholar
  29. 29.
    R.E. Kusner, J.A. Mann, J. Kerins, A.J. Dahm, Phys. Rev. Lett. 73, 3113 (1994)ADSCrossRefGoogle Scholar
  30. 30.
    A.H. Marcus, S.A. Rice, Phys. Rev. Lett. 77, 2577 (1996)ADSCrossRefGoogle Scholar
  31. 31.
    A.H. Marcus, S.A. Rice, Phys. Rev. E 55, 637 (1997)ADSCrossRefGoogle Scholar
  32. 32.
    K. Zahn, R. Lenke, G. Maret, Phys. Rev. Lett. 82, 2721 (1999)ADSCrossRefGoogle Scholar
  33. 33.
    K. Zahn, G. Maret, Phys. Rev. Lett. 85, 3656 (2000)ADSCrossRefGoogle Scholar
  34. 34.
    R.A. Segalman, A. Hexemer, R.C. Hayward, E.J. Kramer, Macromolecules 36, 3272 (2003)ADSCrossRefGoogle Scholar
  35. 35.
    D.E. Angelescu, C.K. Harrison, M.L. Trawick, R.A. Register, P.M. Chaikin, Phys. Rev. Lett. 95, 025702 (2005)ADSCrossRefGoogle Scholar
  36. 36.
    Y. Han, N.Y. Ha, A.M. Alsayed, A.G. Yodh, Phys. Rev. E 77, 041406 (2008)ADSCrossRefGoogle Scholar
  37. 37.
    Z.R. Wang, A.M. Alsayed, A.G. Yodh, Y.L. Han, J. Chem. Phys. 132, 154501 (2010)ADSCrossRefGoogle Scholar
  38. 38.
    H.H. von Grünberg, P. Keim, K. Zahn, G. Maret, Phys. Rev. Lett. 93, 255703 (2004)ADSCrossRefGoogle Scholar
  39. 39.
    P. Keim, G. Maret, H.H. von Grünberg, Phys. Rev. E 75, 031402 (2007)ADSCrossRefGoogle Scholar
  40. 40.
    S. Deutschländer, T. Horn, H. Löwen, G. Maret, P. Keim, Phys. Rev. Lett. 111, 098301 (2013)ADSCrossRefGoogle Scholar
  41. 41.
    P. Dillmann, G. Maret, P. Keim, J. Phys. Cond. Mat. 20, 404216 (2008)CrossRefGoogle Scholar
  42. 42.
    R. Becker, W. Döring, Ann. Phys. 24, 719 (1935)CrossRefzbMATHGoogle Scholar
  43. 43.
    D. Turnbull, J.C. Fisher, J. Chem. Phys. 17, 71 (1949)ADSCrossRefGoogle Scholar
  44. 44.
    C.S. Kiang, D. Stauffer, G.H. Walker, O.P. Puri, J.D. Wise Jr., E.M. Patterson, J. Atmos. Sci. 28, 1222 (1971)ADSCrossRefGoogle Scholar
  45. 45.
    K. Binder, D. Stauffer, Adv. Phys. 25, 343 (1976)ADSCrossRefGoogle Scholar
  46. 46.
    D.W. Heerman, W. Klein, Phys. Rev. Lett. 50, 1062 (1983)ADSCrossRefGoogle Scholar
  47. 47.
    P.N. Pusey, W. van Megen, Nature 320, 340 (1986)ADSCrossRefGoogle Scholar
  48. 48.
    J. Zhu, M. Li, R. Rogers, W. Meyer, R.H. Ottewill, STS-73 Space Shuttle Crew, W.B. Russel, P.M. Chaikin, Nature 387, 883 (1997)ADSCrossRefGoogle Scholar
  49. 49.
    U. Gasser, E.R. Weeks, A. Schofield, P.N. Pusey, D.A. Weitz, Science 292, 258 (2001)ADSCrossRefGoogle Scholar
  50. 50.
    U. Gasser, A. Schofield, D.A. Weitz, J. Phys. Cond. Mat. 15, 375 (2003)ADSCrossRefGoogle Scholar
  51. 51.
    S. Auer, D. Frenkel, Nature 409, 1020 (2001)ADSCrossRefGoogle Scholar
  52. 52.
    V.J. Anderson, H.N. Lekkerkerker, Nature 416, 811 (2002)ADSCrossRefGoogle Scholar
  53. 53.
    S. Auer, D. Frenkel, Adv. Polym. Sci. 173, 149 (2005)CrossRefGoogle Scholar
  54. 54.
    D. Moroni, P.R. ten Wolde, P.G. Bolhuis, Phys. Rev. Lett. 94, 235703 (2005)ADSCrossRefGoogle Scholar
  55. 55.
    A. Cacciuto, S. Auer, D. Frenkel, Nature 428, 404 (2004)ADSCrossRefGoogle Scholar
  56. 56.
    L. Zheng, Q. An, Y. Xie, Z.H. Sun, S.N. Luo, J. Chem. Phys. 127, 164503 (2007)ADSCrossRefGoogle Scholar
  57. 57.
    V.I. Kalikmanov, J. Wölk, T. Kraska, J. Chem. Phys. 128, 124506 (2008)ADSCrossRefGoogle Scholar
  58. 58.
    T. Schilling, H. J. Schöpe, M. Oettel, G. Opletal, I. Snook, Phys. Rev. Lett. 105, 025701 (2010)ADSCrossRefGoogle Scholar
  59. 59.
    L. Granasy, G. Tegze, G.I. Toth, P. Tamas, Phil. Mag 91, 123 (2011)ADSCrossRefGoogle Scholar
  60. 60.
    T.H. Zhang, X.Y. Liu, J. Am. Chem. Soc. 129, 13520 (2007)CrossRefGoogle Scholar
  61. 61.
    J.R. Savage, A.D. Dinsmore, Phys. Rev. Lett. 102, 198302 (2009)ADSCrossRefGoogle Scholar
  62. 62.
    P. Steinhardt, D.R. Nelson, M. Ronchetti, Phys. Rev. B 28, 784 (1983)ADSCrossRefGoogle Scholar
  63. 63.
    W. Lechner, C. Dellago, J. Chem Phys. 129, 114707 (2008)ADSCrossRefGoogle Scholar
  64. 64.
    F.C. Frank, Proc. R. Soc. Lond. A 215, 43 (1952)ADSCrossRefGoogle Scholar
  65. 65.
    C.P. Royall, S.R. Williams, T. Ohtsuka, H. Tanaka, Nature Mat. 7, 556 (2008)ADSCrossRefGoogle Scholar
  66. 66.
    F. Ebert, P. Dillmann, G. Maret, P. Keim, Rev. Sci. Inst. 80, 083902 (2009)ADSCrossRefGoogle Scholar
  67. 67.
    P. Dillmann, G. Maret, P. Keim, J. Phys. Cond. Mat. 24, 464118 (2012)ADSCrossRefGoogle Scholar
  68. 68.
    K.J. Strandburg, J.A. Zollweg, G.V. Chester, Pys. Rev. B 30, 2755 (1988)ADSCrossRefGoogle Scholar
  69. 69.
  70. 70.
    P. Dillmann, G. Maret, P. Keim, [arXiv:1303.6821] [cond-mat.soft]
  71. 71.
    A.E. Larsen, D.G. Grier, Phys. Rev. Lett. 76, 3862 (1996)ADSCrossRefGoogle Scholar
  72. 72.
    F. Hausdorf, Math. Ann. 79, 157 (1919)CrossRefGoogle Scholar
  73. 73.
    A.S. Besicovitch, Math. Ann. 110, 321 (1935)MathSciNetCrossRefGoogle Scholar
  74. 74.
    B.B. Mandelbrot, Science 156, 636 (1967)ADSCrossRefGoogle Scholar
  75. 75.
    L.F. Richardson, General Syst. Yearbook 6, 139 (1961)Google Scholar
  76. 76.
    C.M. Sorenson, J. Cai, N. Lu, Appl. Opt. 31, 6547 (1992)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  1. 1.Fachbereich PhysikUniversität KonstanzKonstanzGermany

Personalised recommendations