Advertisement

The European Physical Journal Special Topics

, Volume 222, Issue 11, pp 2911–2922 | Cite as

Computer simulations of charged colloids in alternating electric fields

  • Jiajia Zhou
  • Friederike Schmid
Review Electric Fields

Abstract

We briefly review recent theoretical and simulation studies of charged colloidal dispersions in alternating electric fields (AC fields). The response of single colloid to an external field can be characterized by a complex polarizability, which describes the dielectric properties of the colloid and its surrounding electrical double layer. We present computer simulation studies of single spherical colloid, using a coarse-grained mesoscale approach that accounts in full for hydrodynamic and electrostatic interactions as well as for thermal fluctuations. We investigate systematically a number of controlling parameters, such as the amplitude and frequency of the AC-fields. The results are in good agreement with recent theoretical predictions.

Keywords

Dipole Moment European Physical Journal Special Topic Electric Double Layer Dielectric Response Colloidal Dispersion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W.B. Russel, D.A. Saville, W. Schowalter, Colloidal Dispersions (Cambridge University Press, Cambridge, 1989)Google Scholar
  2. 2.
    P.C. Hiemenz, R. Rajagopalan, Principles of Colloid and Surface Chemistry, 3rd edn. (Marcel Dekker, New York, 1997)Google Scholar
  3. 3.
    J. Kreuter (ed.), Colloidal Drug Delivery Systems (Marcel Dekker, New York, 1994)Google Scholar
  4. 4.
    M. Grzelczak, J. Vermant, E.M. Furst, L.M. Liz-Marzán, ACS Nano 4, 3591 (2010)Google Scholar
  5. 5.
    H. Pohl, Dielectrophoresis (Cambridge University Press, Cambridge, 1978)Google Scholar
  6. 6.
    T.B. Jones, Electrimechanics of Particles (Cambridge University Press, Cambridge, 1995)Google Scholar
  7. 7.
    M.T. Sullivan, K. Zhao, A.D. Hollingsworth, R.H. Austin, W.B. Russel, P.M. Chaikin, Phys. Rev. Lett. 96, 015703 (2006)ADSGoogle Scholar
  8. 8.
    M.E. Leunissen, M.T. Sullivan, P.M. Chaikin, A. van Blaaderen, J. Chem. Phys. 128, 164508 (2008)ADSGoogle Scholar
  9. 9.
    M.E. Leunissen, A. van Blaaderen, J. Chem. Phys. 128, 164509 (2008)ADSGoogle Scholar
  10. 10.
    N. Green, H. Morgan, J. Milner, J. Biochem. Biophys. Methods 35, 89 (1997)Google Scholar
  11. 11.
    P.R.C. Gascoyne, J. Vykoukal, Electrophoresis 23, 1973 (2002)Google Scholar
  12. 12.
    G.H. Markx, R. Pethig, Biotechnol. Bioeng. 45, 337 (1995)Google Scholar
  13. 13.
    H. Morgan, M. Hughes, N. Green, Biophys. J. 77, 516 (1999)Google Scholar
  14. 14.
    J. Regtmeier, T.T. Duong, R. Eichhorn, D. Anselmetti, A. Ros, Anal. Chem. 79, 3925 (2007)Google Scholar
  15. 15.
    A. Yethiraj, A. van Blaaderen, Nature 421, 513 (2003)ADSGoogle Scholar
  16. 16.
    W.D. Ristenpart, I.A. Aksay, D.A. Saville, Phys. Rev. Lett. 90, 128303 (2003)ADSGoogle Scholar
  17. 17.
    S.O. Lumsdon, E.W. Kaler, O.D. Velev, Langmuir 20, 2108 (2004)Google Scholar
  18. 18.
    J.M. McMullan, N.J. Wagner, Soft Matter 6, 5443 (2010)ADSGoogle Scholar
  19. 19.
    J.M. McMullan, N.J. Wagner, Langmuir 28, 4123 (2012)Google Scholar
  20. 20.
    P.J. Beltramo, E.M. Furst, Electrophoresis 34, 1000 (2013)Google Scholar
  21. 21.
    T. Gong, D.W.M. Marr, Langmuir 17, 2301 (2001)Google Scholar
  22. 22.
    T. Gong, D.T. Wu, D.W.M. Marr, Langmuir 18, 10064 (2002)Google Scholar
  23. 23.
    P.D. Hoffman, P.S. Sarangapani, Y. Zhu, Langmuir 24, 12164 (2008)Google Scholar
  24. 24.
    K.D. Hermanson, S.O. Lumsdon, J.P. Williams, E.W. Kaler, O.D. Velev, Science 294, 1082 (2001)ADSGoogle Scholar
  25. 25.
    J.P. Singh, P.P. Lele, F. Nettesheim, N.J. Wagner, E.M. Furst, Phys. Rev. E 79, 050401 (2009)ADSGoogle Scholar
  26. 26.
    K. Kang, J.K. Dhont, Soft Matter 6, 273 (2010)ADSGoogle Scholar
  27. 27.
    K. Kang, J.K. Dhont, Soft Matter 9, 4401 (2013)ADSGoogle Scholar
  28. 28.
    S. Gangwal, O.J. Cayre, O.D. Velev, Langmuir 24, 13312 (2008)Google Scholar
  29. 29.
    L. Zhang, Y. Zhu, Langmuir 28, 13201 (2012)Google Scholar
  30. 30.
    J. Maxwell, Electricity and Magnetism, Vol. 1 (Dover, New York, 1954)Google Scholar
  31. 31.
    K. Wagner, Arch. Electrotech 2, 371 (1914)Google Scholar
  32. 32.
    C. O’Konski, J. Phys. Chem. 64, 605 (1960)Google Scholar
  33. 33.
    D.A. Saville, T. Bellini, V. Degiorgio, F. Mantegazza, J. Chem. Phys. 113, 6974 (2000)ADSGoogle Scholar
  34. 34.
    N.G. Green, H. Morgan, J. Phys. Chem. B 103, 41 (1999)Google Scholar
  35. 35.
    I. Ermolina, H. Morgan, J. Colloid Interface Sci. 285, 419 (2005)Google Scholar
  36. 36.
    S. Dukhin, V. Shilov, Dielectric phenomena and the double layer in disperse systems and polyelectrolytes (Wiley, New York, 1974)Google Scholar
  37. 37.
    S.S. Dukhin, Adv. Colloid Interface Sci. 44, 1 (1993)Google Scholar
  38. 38.
    C. Grosse, V.N. Shilov, J. Phys. Chem. 100, 1771 (1996)Google Scholar
  39. 39.
    E.J. Hinch, J.D. Sherwood, W.C. Chew, P.N. Sen, J. Chem. Soc., Faraday Trans. 2 80, 535 (1984)Google Scholar
  40. 40.
    C. Chassagne, D. Bedeaux, G.J.M. Koper, Physica A 317, 321 (2003)ADSGoogle Scholar
  41. 41.
    C. Grosse, J. Phys. Chem. B 113, 8911 (2009)Google Scholar
  42. 42.
    C. Grosse, J. Phys. Chem. B 113, 11201 (2009)Google Scholar
  43. 43.
    C. Chassagne, D. Bedeaux, J. Colloid Interface Sci. 326, 240 (2008)Google Scholar
  44. 44.
    J. Dhont, K. Kang, Eur. Phys. J. E 33, 51 (2010)ADSGoogle Scholar
  45. 45.
    J. Dhont, K. Kang, Eur. Phys. J. E 34, 40 (2011)Google Scholar
  46. 46.
    E.H.B. DeLacey, L.R. White, J. Chem. Soc., Faraday Trans. 2 77, 2007 (1981)Google Scholar
  47. 47.
    M. Fixman, J. Chem. Phys. 78, 1483 (1983)ADSGoogle Scholar
  48. 48.
    C.S. Mangelsdorf, L.R. White, J. Chem. Soc., Faraday Trans. 88, 3567 (1992)Google Scholar
  49. 49.
    J.J. López-García, A. Moya, J. Horno, A. Delgado, F. González-Caballero, J. Colloid Interface Sci. 183, 124 (1996)Google Scholar
  50. 50.
    C.S. Mangelsdorf, L.R. White, J. Chem. Soc., Faraday Trans. 93, 3145 (1997)Google Scholar
  51. 51.
    R.J. Hill, D.A. Saville, W.B. Russel, Phys. Chem. Chem. Phys. 5, 911 (2003)Google Scholar
  52. 52.
    R.J. Hill, D. Saville, Colloids Surf. A 267, 31 (2005)Google Scholar
  53. 53.
    H. Zhou, M.A. Preston, R.D. Tilton, L.R. White, J. Colloid Interface Sci. 285, 845 (2005)Google Scholar
  54. 54.
    K. Kim, Y. Nakayama, R. Yamamoto, Phys. Rev. Lett. 96, 208302 (2006)ADSGoogle Scholar
  55. 55.
    Y. Nakayama, K. Kim, R. Yamamoto, Eur. Phys. J. E 26, 361 (2008)Google Scholar
  56. 56.
    H. Zhao, H.H. Bau, J. Colloid Interface Sci. 333, 663 (2009)Google Scholar
  57. 57.
    R. Schmitz, B. Dünweg, J. Physics: Cond. Matter 24, 464111 (2012)ADSGoogle Scholar
  58. 58.
    H. Zhao, H.H. Bau, Langmuir 26, 5412 (2010)Google Scholar
  59. 59.
    A.S. Khair, T.M. Squires, Phys. Fluids 21, 042001 (2009)ADSGoogle Scholar
  60. 60.
    H. Zhao, Phys. Fluids 22, 072004 (2010)ADSGoogle Scholar
  61. 61.
    F. Carrique, E. Ruiz-Reina, F.J. Arroyo, M.L. Jiménez, A.V. Delgado, Langmuir 24, 2395 (2008)Google Scholar
  62. 62.
    F. Carrique, E. Ruiz-Reina, F.J. Arroyo, M.L. Jiménez, A.V. Delgado, Langmuir 24, 11544 (2008)Google Scholar
  63. 63.
    R. Roa, F. Carrique, E. Ruiz-Reina, J. Colloid Interface Sci. 387, 153 (2012)Google Scholar
  64. 64.
    I. Pagonabarraga, B. Rotenberg, D. Frenkel, Phys. Chem. Chem. Phys. 12, 9566 (2010)Google Scholar
  65. 65.
    B. Rotenberg, I. Pagonabarraga, Mol. Phys. (2013), doi: 10.1080/00268976.2013.791731Google Scholar
  66. 66.
    S. Succi, The Lattice Boltzmann Equation (Clarendon Press, Oxford, 2001)Google Scholar
  67. 67.
    D. Raabe, Modelling Simul. Mater. Sci. Eng. 12, R13 (2004)ADSGoogle Scholar
  68. 68.
    J.M. Yeomans, Physica A 369, 159 (2006)MathSciNetADSGoogle Scholar
  69. 69.
    B. Dünweg, A.J.C. Ladd, Adv. Polym. Sci. 221, 89 (2009)Google Scholar
  70. 70.
    P.J. Hoogerbrugge, J.M.V.A. Koelman, Europhys. Lett. 19, 155 (1992)ADSGoogle Scholar
  71. 71.
    P. Español, P.B. Warren, Europhys. Lett. 30, 191 (1995)ADSGoogle Scholar
  72. 72.
    R.D. Groot, P.B. Warren, J. Chem. Phys. 107, 4423 (1997)ADSGoogle Scholar
  73. 73.
    A. Malevanets, R. Kapral, J. Chem. Phys. 110, 8605 (1999)ADSGoogle Scholar
  74. 74.
    R. Kapral, Adv. Chem. Phys. 140, 89 (2008)Google Scholar
  75. 75.
    G. Gompper, T. Ihle, D.M. Kroll, R.G. Winkler, Adv. Polym. Sci. 221, 1 (2009)Google Scholar
  76. 76.
    J. Smiatek, F. Schmid, Mesoscopic simulation methods for studying flow and transport in electric fields in micro- and nanochannels, Vol. 26 of Advances in Microfluidics chap. 5 (InTech Open Access Publisher, 2012), p. 97Google Scholar
  77. 77.
    A. Ladd, Phys. Rev. Lett. 70, 1339 (1993)ADSGoogle Scholar
  78. 78.
    A. Ladd, J. Fluid Mech. 271, 285 (1994)MathSciNetADSzbMATHGoogle Scholar
  79. 79.
    A. Ladd, J. Fluid Mech. 271, 311 (1994)MathSciNetADSGoogle Scholar
  80. 80.
    A.J.C. Ladd, H. Gang, J. Zhu, D. Weitz, Phys. Rev. E 52, 6550 (1995)ADSGoogle Scholar
  81. 81.
    A. Ladd, R. Verberg, J. Stat. Phys. 104, 1191 (2001)MathSciNetADSzbMATHGoogle Scholar
  82. 82.
    J. Horbach, D. Frenkel, Phys. Rev. E 64, 061507 (2001)ADSGoogle Scholar
  83. 83.
    F. Capuani, I. Pagonabarraga, D. Frenkel, J. Chem. Phys. 121, 973 (2004)ADSGoogle Scholar
  84. 84.
    B. Rotenberg, I. Pagonabarraga, D. Frenkel, Faraday Discuss. 144, 223 (2010)ADSGoogle Scholar
  85. 85.
    G. Giupponi, I. Pagonabarraga, Phys. Rev. Lett. 106, 248304 (2011)ADSGoogle Scholar
  86. 86.
    G. Giupponi, I. Pagonabarraga, Phil. Trans. R. Soc. A 369, 2546 (2011)MathSciNetADSzbMATHGoogle Scholar
  87. 87.
    P. Ahlrichs, B. Dünweg, Int. J. Mod. Phys. C 9, 1429 (1998)ADSGoogle Scholar
  88. 88.
    P. Ahlrichs, B. Dünweg, J. Chem. Phys. 111, 8225 (1999)ADSGoogle Scholar
  89. 89.
    V. Lobaskin, B. Dünweg, New J. Phys. 6, 54 (2004)ADSGoogle Scholar
  90. 90.
    V. Lobaskin, B. Dünweg, C. Holm, J. Phys.: Condens. Matter 16, S4063 (2004)ADSGoogle Scholar
  91. 91.
    V. Lobaskin, B. Dünweg, M. Medebach, T. Palberg, C. Holm, Phys. Rev. Lett. 98, 176105 (2007)ADSGoogle Scholar
  92. 92.
    I. Semenov, S. Raafatnia, M. Sega, V. Lobaskin, C. Holm, F. Kremer, Phys. Rev. E 87, 022302 (2013)ADSGoogle Scholar
  93. 93.
    A. Chatterji, J. Horbach, J. Chem. Phys. 122, 184903 (2005)ADSGoogle Scholar
  94. 94.
    A. Chatterji, J. Horbach, J. Chem. Phys. 126, 064907 (2007)ADSGoogle Scholar
  95. 95.
    A. Chatterji, J. Horbach, J. Phys.: Condens. Matter 22, 494102 (2010)Google Scholar
  96. 96.
    J.M.V.A. Koelman, P.J. Hoogerbrugge, Europhys. Lett. 21, 363 (1993)ADSGoogle Scholar
  97. 97.
    E.S. Boek, P.V. Coveney, H.N.W. Lekkerkerker, P. van der Schoot, Phys. Rev. E 55, 3124 (1997)ADSGoogle Scholar
  98. 98.
    T. Steiner, C. Cupelli, R. Zengerle, M. Santer, Microfluid. Nanofluid. 7, 307 (2009)Google Scholar
  99. 99.
    P. Español, Phys. Rev. E 57, 2930 (1998)ADSGoogle Scholar
  100. 100.
    W. Dzwinel, D.A. Yuen, J. Colloid Interface Sci. 225, 179 (2000)Google Scholar
  101. 101.
    W. Pan, I.V. Pivkin, G.E. Karniadakis, Europhys. Lett. 84, 10012 (2008)MathSciNetADSGoogle Scholar
  102. 102.
    J. Zhou, F. Schmid, J. Phys.: Condens. Matter 24, 464112 (2012)ADSGoogle Scholar
  103. 103.
    J. Smiatek, M. Allen, F. Schmid, Eur. Phys. J. E 26, 115 (2008)Google Scholar
  104. 104.
    J. Smiatek, M. Sega, C. Holm, U.D. Schiller, F. Schmid, J. Chem. Phys. 130, 244702 (2009)ADSGoogle Scholar
  105. 105.
    J. Smiatek, F. Schmid, J. Phys. Chem. B 114, 6266 (2010)Google Scholar
  106. 106.
    J. Smiatek, F. Schmid, Comp. Phys. Comm. 182, 1941 (2011)ADSGoogle Scholar
  107. 107.
    J. Zhou, A.V. Belyaev, F. Schmid, O.I. Vinogradova, J. Chem. Phys. 136, 194706 (2012)ADSGoogle Scholar
  108. 108.
    S. Meinhardt, J. Smiatek, R. Eichhorn, F. Schmid, Phys. Rev. Lett. 108, 214504 (2012)ADSGoogle Scholar
  109. 109.
    W. Humphrey, A. Dalke, K. Schulten, J. Molec. Graph. 14, 33 (1996)Google Scholar
  110. 110.
    A. Malevanets, R. Kapral, J. Chem. Phys. 112, 7260 (2000)ADSGoogle Scholar
  111. 111.
    S.H. Lee, R. Kapral, Physica A 298, 56 (2001)ADSGoogle Scholar
  112. 112.
    A. Lamura, G. Gompper, T. Ihle, D.M. Kroll, Europhys. Lett. 56, 319 (2001)ADSGoogle Scholar
  113. 113.
    A. Lamura, G. Gompper, Eur. Phys. J. E 9, 477 (2002)Google Scholar
  114. 114.
    S.H. Lee, R. Kapral, J. Chem. Phys. 121, 11163 (2004)ADSGoogle Scholar
  115. 115.
    J.T. Padding, A. Wysocki, H. Löwen, A.A. Louis, J. Phys.: Condens. Matter 17, S3393 (2005)ADSGoogle Scholar
  116. 116.
    J.T. Padding, A.A. Louis, Phys. Rev. E 74, 031402 (2006)ADSGoogle Scholar
  117. 117.
    J.K. Whitmer, E. Luijten, J. Phys.: Condens. Matter 22, 104106 (2010)ADSGoogle Scholar
  118. 118.
    J. Zhou, F. Schmid, Eur. Phys. J. E 36, 33 (2013)Google Scholar
  119. 119.
    J. Zhou, R. Schmitz, B. Dünweg, F. Schmid, J. Chem. Phys. 139, 024901 (2013)ADSGoogle Scholar
  120. 120.
    J. Bikerman, Trans. Faraday Soc. 35, 154 (1940)Google Scholar
  121. 121.
    R.W. O’Brien, J. Colloid Interface Sci. 113, 81 (1986)Google Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  • Jiajia Zhou
    • 1
  • Friederike Schmid
    • 1
  1. 1.Institut für PhysikJohannes Gutenberg-Universität MainzMainzGermany

Personalised recommendations