Advertisement

The European Physical Journal Special Topics

, Volume 222, Issue 11, pp 2895–2909 | Cite as

Manipulating the self assembly of colloids in electric fields

  • A. van Blaaderen
  • M. Dijkstra
  • R. van Roij
  • A. Imhof
  • M. Kamp
  • B. W. Kwaadgras
  • T. Vissers
  • B. Liu
Review Electric Fields

Abstract

During the last decade the focus in colloid science on self-assembly has moved from mostly spherical particles and interaction potentials to more and more complex particle shapes, interactions and conditions. In this minireview we focus on how external electric fields, which in almost all cases can be replaced by magnetic particles and fields for similar effects, are used to manipulate the self-assembly process of ever more complex colloids. We will illustrate typical results from literature next to examples of our own work on how electric fields are used to achieve a broad range of different effects guiding the self-assembly of colloidal dispersions. In addition, preliminary measurements and calculations on how electric fields can be used to induce lock-and-key interactions will be presented as well.

Keywords

European Physical Journal Special Topic Dipolar Interaction Soft Matter Colloidal Dispersion Colloidal Crystal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Present day Wikipedia definitions of Self-Assembly and Self-Organization: http://en.wikipedia.org/wiki/Self-organization and http://en.wikipedia.org/wiki/Self-assembly
  2. 2.
    L. Cademartiri, K.J.M. Bishop, P.W. Snyder, G.A. Ozin, Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. 370, 2824 (2012)ADSGoogle Scholar
  3. 3.
    N.B. Crane, O. Onen, J. Carballo, Q. Ni, R. Guldiken, Microfluid. Nanofluid. 14, 383 (2013)Google Scholar
  4. 4.
    E. Duguet, A. Desert, A. Perro, S. Ravaine, Chem. Soc. Rev. 40, 941 (2011)Google Scholar
  5. 5.
    G. Falk, J. Phys. Chem. B 117, 1527 (2013)Google Scholar
  6. 6.
    S. Furumi, H. Fudouzi, T. Sawada, Laser Photon. Rev. 4, 205 (2010)Google Scholar
  7. 7.
    M. Grzelczak, J. Vermant, E.M. Furst, L.M. Liz-Marzan, ACS Nano 4, 3591 (2010)Google Scholar
  8. 8.
    T. Hao, Adv. Colloid Interface Sci. 142, 1 (2008)Google Scholar
  9. 9.
    I. Kretzschmar, J.H. Song, Curr. Opin. Colloid Interface Sci. 16, 84 (2011)Google Scholar
  10. 10.
    M. Lattuada, T.A. Hatton, Nano Today 6, 286 (2011)Google Scholar
  11. 11.
    K.J. Lee, J. Yoon, J. Lahann, Curr. Opin. Colloid Interface Sci. 16, 195 (2011)Google Scholar
  12. 12.
    F. Li, D.P. Josephson, A. Stein, Angew. Chem. Int. Edit. 50, 360 (2011)Google Scholar
  13. 13.
    K. Liu, N. Zhao, E. Kumacheva, Chem. Soc. Rev. 40, 656 (2011)Google Scholar
  14. 14.
    H. Löwen, J. Phys. Condes. Matter 24, 460201 (2012)Google Scholar
  15. 15.
    M. Mastrangeli, S. Abbasi, C. Varel, C. Van Hoof, J. Celis, K.F. Boehringer, J. Micromech Microengineering 19, 083001 (2009)ADSGoogle Scholar
  16. 16.
    Y. Min, M. Akbulut, K. Kristiansen, Y. Golan, J. Israelachvili, Nat. Mater. 7, 527 (2008)ADSGoogle Scholar
  17. 17.
    A.B. Pawar, I. Kretzschmar, Macromol. Rapid Commun. 31, 150 (2010)Google Scholar
  18. 18.
    M. Pichumani, P. Bagheri, K.M. Poduska, W. Gonzalez-Vinas, A. Yethiraj, Soft Matter 9, 3220 (2013)ADSGoogle Scholar
  19. 19.
    D.C. Prieve, P.J. Sides, C.L. Wirth, Curr. Opin. Colloid Interface Sci. 15, 160 (2010)Google Scholar
  20. 20.
    B.V.R. Tata, R.G. Joshi, D.K. Gupta, J. Brijitta, B. Raj, Curr. Sci. 103, 1175 (2012)Google Scholar
  21. 21.
    A. van Blaaderen, MRS Bull 29, 85 (2004)Google Scholar
  22. 22.
    A. van Blaaderen, Nature 439, 545 (2006)ADSGoogle Scholar
  23. 23.
    D. Vanmaekelbergh, Nano Today 6, 419 (2011)Google Scholar
  24. 24.
    O.D. Velev, S. Gupta, Adv. Mater. 21, 1897 (2009)Google Scholar
  25. 25.
    A. Yethiraj, Soft Matter 3, 1099 (2007)ADSGoogle Scholar
  26. 26.
    J. Zhang, Z. Sun, B. Yang, Curr. Opin. Colloid Interface Sci. 14, 103 (2009)Google Scholar
  27. 27.
    D.A. Walker, B. Kowalczyk, M.O. de la Cruz, B.A. Grzybowski, Nanoscale 3, 1316 (2011)ADSGoogle Scholar
  28. 28.
    N. Wu, W.B. Russel, Nano Today 4, 180 (2009)Google Scholar
  29. 29.
    M.Z. Bazant, M.S. Kilic, B.D. Storey, A. Ajdari, Adv. Colloid Interface Sci. 152, 48 (2009)Google Scholar
  30. 30.
    C. Cametti, Soft Matter 7, 5494 (2011)ADSGoogle Scholar
  31. 31.
    C. Grosse, A.V. Delgado, Curr. Opin. Colloid Interface Sci. 15, 145 (2010)Google Scholar
  32. 32.
    M. Luisa Jimenez, T. Bellini, Curr. Opin. Colloid Interface Sci. 15, 131 (2010)Google Scholar
  33. 33.
    H. Ohshima, Sci. Technol. Adv. Mater. 10, 063001 (2009)Google Scholar
  34. 34.
    J.D. Posner, Mech. Res. Commun. 36, 22 (2009)zbMATHGoogle Scholar
  35. 35.
    C. Zhao, C. Yang, Microfluid. Nanofluid. 13, 179 (2012)MathSciNetGoogle Scholar
  36. 36.
    E.K. Zholkovskij, J.H. Masliyah, V.N. Shilov, S. Bhattachalgee, Adv. Colloid Interface Sci. 134-35, 279 (2007)Google Scholar
  37. 37.
    M. Ammam, RSC Adv. 2, 7633 (2012)Google Scholar
  38. 38.
    A. Chavez-Valdez, A.R. Boccaccini, Electrochim. Acta 65, 70 (2012)Google Scholar
  39. 39.
    B. Neirinck, O. Van der Biest, J. Vleugels, J Phys Chem B 117, 1516 (2013)Google Scholar
  40. 40.
    T.L. Doane, C. Chuang, R.J. Hill, C. Burda, Acc. Chem. Res. 45, 317 (2012)Google Scholar
  41. 41.
    J. Lietor-Santos, A. Fernandez-Nieves, Adv. Colloid Interface Sci. 147-48, 178 (2009)Google Scholar
  42. 42.
    Y.D. Liu, H.J. Choi, Soft Matter 8, 11961 (2012)ADSGoogle Scholar
  43. 43.
    P. Sheng, W. Wen, Annu. Rev. Fluid Mech. 44, 143 (2012)MathSciNetADSGoogle Scholar
  44. 44.
    W. Wen, X. Huang, P. Sheng, Soft Matter 4, 200 (2008)ADSGoogle Scholar
  45. 45.
    R. Pethig, Biomicrofluidics 4, 022811 (2010)Google Scholar
  46. 46.
    C. Zhang, K. Khoshmanesh, A. Mitchell, K. Kalantar-zadeh, Anal. Bioanal. Chem. 396, 401 (2010)Google Scholar
  47. 47.
    H. Zhao, Electrophoresis 32, 2232 (2011)Google Scholar
  48. 48.
    I.S. Aranson, Phys. Usp. 56, 79 (2013)ADSGoogle Scholar
  49. 49.
    J. Dobnikar, A. Snezhko, A. Yethiraj, Soft Matter 9, 3693 (2013)ADSGoogle Scholar
  50. 50.
    H. Löwen, Soft Matter 6, 3133 (2010)ADSGoogle Scholar
  51. 51.
    S. Ramaswamy, Annu. Rev. Condens. Matter Phys. 1, 323 (2010)ADSGoogle Scholar
  52. 52.
    R.W. Bowman, M.J. Padgett, Rep. Prog. Phys. 76, 026401 (2013)ADSGoogle Scholar
  53. 53.
    K. Dholakia, P. Reece, M. Gu, Chem. Soc. Rev. 37, 42 (2008)Google Scholar
  54. 54.
    M. Dienerowitz, M. Mazilu, K. Dholakia, J. Nanophotonics 2, 021875 (2008)Google Scholar
  55. 55.
    D. Nagao, M. Hashimoto, K. Hayasaka, M. Konno, Macromol. Rapid Commun. 29, 1484 (2008)Google Scholar
  56. 56.
    D. Nagao, C.M. van Kats, K. Hayasaka, M. Sugimoto, M. Konno, A. Imhof, A. van Blaaderen, Langmuir 26, 5208 (2010)Google Scholar
  57. 57.
    D. Nagao, M. Sugimoto, A. Okada, H. Ishii, M. Konno, A. Imhof, A. van Blaaderen, Langmuir 28, 6546 (2012)Google Scholar
  58. 58.
    M. Nishi, D. Nagao, K. Hayasaka, H. Ishii, M. Konno, Soft Matter 8, 11152 (2012)ADSGoogle Scholar
  59. 59.
    A. Okada, D. Nagao, H. Ishii, M. Konno, Soft Matter 8, 3442 (2012)ADSGoogle Scholar
  60. 60.
    Q. Dai, A. Nelson, Chem. Soc. Rev. 39, 4057 (2010)Google Scholar
  61. 61.
    M. Hermes, E.C.M. Vermolen, M.E. Leunissen, D.L.J. Vossen, P.D.J. van Oostrum, M. Dijkstra, A. van Blaaderen, Soft Matter 7, 4517 (2011)Google Scholar
  62. 62.
    F. Evers, R.D.L. Hanes, C. Zunke, R.F. Capellmann, J. Bewerunge, C. Dalle-Ferrier, M.C. Jenkins, I. Ladadwa, A. Heuer, R. Castañeda-Priego, S.U. Egelhaaf, S.U., Eur. Phys. J. Special Topics 222(11), 2995 (2013)ADSGoogle Scholar
  63. 63.
    T. Vissers, A. Imhof, F. Carrique, A.V. Delgado, A. van Blaaderen, J. Colloid Interface Sci. 361, 443 (2011)Google Scholar
  64. 64.
    M. van der Linden, et al. (in preparation) (2013)Google Scholar
  65. 65.
    V. Lobaskin, B. Duenweg, M. Medebach, T. Palberg, C. Holm, Phys. Rev. Lett. 98, 176105 (2007)ADSGoogle Scholar
  66. 66.
    B. Comiskey, J. Albert, H. Yoshizawa, J. Jacobson, Nature 394, 253 (1998)ADSGoogle Scholar
  67. 67.
    D. Graham-Rowe, Nat. Photonics 1, 248 (2007)ADSGoogle Scholar
  68. 68.
    A.R.M. Verschueren, L.W.G. Stofmeel, P.J. Baesjou, M.H.W.M. van Delden, K.H. Lenssen, M. Mueller, G. Oversluizen, J.J. van Glabbeek, J.T.M. Osenga, R.M. Schuurbiers, J. Soc. Inf. Disp. 18, 1 (2010)Google Scholar
  69. 69.
    M. Leunissen, C. Christova, A. Hynninen, C. Royall, A. Campbell, A. Imhof, M. Dijkstra, R. van Roij, A. van Blaaderen, Nature 437, 235 (2005)ADSGoogle Scholar
  70. 70.
    M. Rex, H. Löwen, Phys. Rev. E. 75, 051402 (2007)ADSGoogle Scholar
  71. 71.
    T. Vissers, A. Wysocki, M. Rex, H. Löwen, C.P. Royall, A. Imhof, A. van Blaaderen, Soft Matter 7, 2352 (2011)ADSGoogle Scholar
  72. 72.
    K.R. Suetterlin, A. Wysocki, A.V. Ivlev, C. Raeth, H.M. Thomas, M. Rubin-Zuzic, W.J. Goedheer, V.E. Fortov, A.M. Lipaev, V.I. Molotkov, O.F. Petrov, G.E. Morfill, H. Löwen, Phys. Rev. Lett. 102, 085003 (2009)ADSGoogle Scholar
  73. 73.
    K.R. Suetterlin, H.M. Thomas, A.V. Ivlev, G.E. Morfill, V.E. Fortov, A.M. Lipaev, V.I. Molotkov, O.F. Petrov, A. Wysocki, H. Löwen, IEEE Trans. Plasma Sci. 38, 861 (2010)ADSGoogle Scholar
  74. 74.
    A. Wysocki, H. Löwen, Phys. Rev. E. 79, 041408 (2009)ADSGoogle Scholar
  75. 75.
    T. Vissers, A. van Blaaderen, A. Imhof, Phys. Rev. Lett. 106, 228303 (2011)ADSGoogle Scholar
  76. 76.
    T. Vissers, Ph.D. thesis, Utrecht University, www.colloid.nl (2010)
  77. 77.
    T. Vissers, T. Besseling, A. van Blaaderen, A. Imhof (in preparation) (2013)Google Scholar
  78. 78.
    R. Dreyfus, J. Baudry, M. Roper, M. Fermigier, H. Stone, J. Bibette, Nature 437, 862 (2005)ADSGoogle Scholar
  79. 79.
    J. Zhou, F. Schmid, Eur. Phys. J. Special Topics 222(11), 2911 (2013)ADSGoogle Scholar
  80. 80.
    J. Zhao, P. Papadopoulos, M. Roth, C. Dobbrow, E. Roeben, A. Schmidt, H.-J. Butt, G.K. Auernhammer, D. Vollmer, Eur. Phys. J. Special Topics 222(11), 2881 (2013)ADSGoogle Scholar
  81. 81.
    G. Nägele, M. Heinen, A.J. Banchio, C. Contreras-Aburto, Eur. Phys. J. Special Topics 222(11), 2855 (2013)Google Scholar
  82. 82.
    R. Schmitz, V. Starchenko, B. Dünweg, Eur. Phys. J. Special Topics 222(11), 2873 (2013)ADSGoogle Scholar
  83. 83.
    K. Hermanson, S. Lumsdon, J. Williams, E. Kaler, O. Velev, Science 294, 1082 (2001)ADSGoogle Scholar
  84. 84.
    K. Kang, J.K.G. Dhont, Soft Matter 6, 273 (2010)ADSGoogle Scholar
  85. 85.
    K. Kang, J.K.G. Dhont, EPL 84, 14005 (2008)ADSGoogle Scholar
  86. 86.
    J.K.G. Dhont, K. Kang, Eur. Phys. J. E 33, 51 (2010)ADSGoogle Scholar
  87. 87.
    J.K.G. Dhont, K. Kang, Eur. Phys. J. E 34, 40 (2011)Google Scholar
  88. 88.
    P.P. Lele, M. Mittal, E.M. Furst, Langmuir 24, 12842 (2008)Google Scholar
  89. 89.
    F. Ma, D.T. Wu, N. Wu, J. Am. Chem. Soc. 135, 7839 (2013)Google Scholar
  90. 90.
    W.D. Ristenpart, P. Jiang, M.A. Slowik, C. Punckt, D.A. Saville, I.A. Aksay, Langmuir 24, 12172 (2008)Google Scholar
  91. 91.
    W. Ristenpart, I. Aksay, D. Saville, Phys Rev E. 69, 021405 (2004)ADSGoogle Scholar
  92. 92.
    P. Dillman, G. Maret, P. Keim, Eur. Phys. J. Special Topics 222(11), 2941 (2013)ADSGoogle Scholar
  93. 93.
    A. Yethiraj, A. van Blaaderen, Nature 421, 513 (2003)ADSGoogle Scholar
  94. 94.
    U. Dassanayake, S. Fraden, A. van Blaaderen, J. Chem. Phys. 112, 3851 (2000)ADSGoogle Scholar
  95. 95.
    A.-P. Hynninen, M. Dijkstra, Phys. Rev. E 72, 051402 (2005)ADSGoogle Scholar
  96. 96.
    R.M. Erb, H.S. Son, B. Samanta, V.M. Rotello, B.B. Yellen, Nature 457, 999 (2009)ADSGoogle Scholar
  97. 97.
    H.R. Vutukuri, A.F. Demirörs, B. Peng, P.D.J. van Oostrum, A. Imhof, A. van Blaaderen, Angew. Chem. Int. Edit. 51, 11249 (2012)Google Scholar
  98. 98.
    B. Peng, E. van der Wee, A. Imhof, A. van Blaaderen, Langmuir 28, 6776 (2012)Google Scholar
  99. 99.
    B. Peng, H.R. Vutukuri, A. van Blaaderen, A. Imhof, J. Mater. Chem. 22, 21893 (2012)Google Scholar
  100. 100.
    F. Smallenburg, H.R. Vutukuri, A. Imhof, A. van Blaaderen, M. Dijkstra, J. Phys. Condes. Matter 24, 464113 (2012)ADSGoogle Scholar
  101. 101.
    D. El Masri, T. Vissers, S. Badaire, J.C.P. Stiefelhagen, H.R. Vutukuri, P. Helfferich, T.H. Zhang, W.K. Kegel, A. Imhof, A. van Blaaderen, Soft Matter 8, 6979 (2012)Google Scholar
  102. 102.
    B.W. Kwaadgras, M. Verdult, M. Dijkstra, R. van Roij, J. Chem. Phys. 135, 134105 (2011)ADSGoogle Scholar
  103. 103.
    B.W. Kwaadgras, M. Dijkstra, R. van Roij, J. Chem. Phys. 136, 131102 (2012)ADSGoogle Scholar
  104. 104.
    C.I. Zoldesi, C.A. van Walree, A. Imhof, Langmuir 22, 4343 (2006)Google Scholar
  105. 105.
    S. Sacanna, W.T.M. Irvine, P.M. Chaikin, D.J. Pine, Nature 464, 575 (2010)ADSGoogle Scholar
  106. 106.
    A. Kuijk, A. van Blaaderen, A. Imhof, J. Am. Chem. Soc. 133, 2346 (2011)Google Scholar
  107. 107.
    B. Liu, T.H. Besseling, M. Hermes, A.F. Demirörs, A. Imhof, A. van Blaaderen (submitted) (2013)Google Scholar
  108. 108.
    A. Kuijk, D.V. Byelov, A.V. Petukhov, A. van Blaaderen, A. Imhof, Faraday Discuss 159, 181 (2012)ADSGoogle Scholar
  109. 109.
    A. Kuijk, T. Troppenz, L. Filion, A. Imhof, R. van Roij, M. Dijkstra, A. van Blaaderen (submitted) (2013)Google Scholar
  110. 110.
    A.F. Demirörs, P.M. Johnson, C.M. van Kats, A. van Blaaderen, A. Imhof, Langmuir 26, 14466 (2010)Google Scholar
  111. 111.
    T. Halsey, R. Anderson, J. Martin, Int. J. Modern Phys. B 10, 3019 (1996)ADSGoogle Scholar
  112. 112.
    J. Martin, R. Anderson, C. Tigges, J. Chem. Phys. 108, 7887 (1998)ADSGoogle Scholar
  113. 113.
    J. Martin, R. Anderson, C. Tigges, J. Chem. Phys. 110, 4854 (1999)ADSGoogle Scholar
  114. 114.
    J. Martin, R. Anderson, R. Williamson, J. Chem. Phys. 118, 1557 (2003)ADSGoogle Scholar
  115. 115.
    M.E. Leunissen, H.R. Vutukuri, A. van Blaaderen, Adv. Mater. 21, 3116 (2009)Google Scholar
  116. 116.
    M. Sullivan, K. Zhao, A. Hollingsworth, R. Austin, W. Russel, P. Chaikin, Phys. Rev. Lett. 96, 015703 (2006)ADSGoogle Scholar
  117. 117.
    M.E. Leunissen, M.T. Sullivan, P.M. Chaikin, A. van Blaaderen, J. Chem. Phys. 128, 164508 (2008)ADSGoogle Scholar
  118. 118.
    M.E. Leunissen, A. van Blaaderen, J. Chem. Phys. 128, 164509 (2008)ADSGoogle Scholar
  119. 119.
    M.E. Leunissen, Ph.D. thesis, Utrecht University, www.colloid.nl (2008)
  120. 120.
    E.C.M. Vermolen, A. Kuijk, L.C. Filion, M. Hermes, J.H.J. Thijssen, M. Dijkstra, A. van Blaaderen, Proc. Natl. Acad. Sci. USA. 106, 16063 (2009)ADSGoogle Scholar
  121. 121.
    A.P. Bartlett, M. Pichumani, M. Giuliani, W. Gonzalez-Vinas, A. Yethiraj, Langmuir 28, 3067 (2012)Google Scholar
  122. 122.
    J.D. Forster, J. Park, M. Mittal, H. Noh, C.F. Schreck, C.S. O’Hern, H. Cao, E.M. Furst, E.R. Dufresne, ACS Nano 5, 6695 (2011)Google Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  • A. van Blaaderen
    • 1
  • M. Dijkstra
    • 1
  • R. van Roij
    • 2
  • A. Imhof
    • 1
  • M. Kamp
    • 1
  • B. W. Kwaadgras
    • 1
  • T. Vissers
    • 1
  • B. Liu
    • 1
  1. 1.Debye Institute for Nanomaterials ScienceUtrecht UniversityCC UtrechtThe Netherlands
  2. 2.Institute for Theoretical PhysicsUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations