Advertisement

The European Physical Journal Special Topics

, Volume 222, Issue 11, pp 2835–2853 | Cite as

Structure and transport properties of charged sphere suspensions in (local) electric fields

  • T. Palberg
  • H. Schweinfurth
  • T. Köller
  • H. Müller
  • H. J. Schöpe
  • A. Reinmüller
Review Electric Fields

Abstract

Motivated by both still open fundamental theoretical questions as well as novel applications, the electro-kinetics of highly charged model colloids have attracted considerable interest in the last few years. The present paper reviews corresponding new developments and trends emerging mainly from novel instrumentations for both strongly interacting and extremely dilute systems. We also highlight recent uses of local electric fields and electro-kinetic currents to realize complex micro-swimmers or prescribe crystal micro-structures.

Keywords

European Physical Journal Special Topic Colloidal Dispersion Colloid Surf Colloidal Crystal Janus Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F.F. Reuss, Proc. Imperial Soc. Naturalists of Moscow 2, 327 (1809)Google Scholar
  2. 2.
    R.J. Hunter, Zeta-potential in colloidal science (Academic, London, 1981)Google Scholar
  3. 3.
    R. Hidalgo-Alvarez, et al., Adv. Colloid Interface Sci. 67, 1 (1996)Google Scholar
  4. 4.
    H. Lyklema, Fundamentals of Interface and Colloid Science, Vols. 1-3 (Academic, London, 1993-2000)Google Scholar
  5. 5.
    A. Delgado, et al., J. Colloid Interface Sci. 309, 194 (2007)Google Scholar
  6. 6.
    S. Ghosal in Chakraborty (ed.), Microfluidics and Microfabrication (Springer, Berlin, 2010)Google Scholar
  7. 7.
    R.J. Hunter, Colloids Surf. A 141, 37 (1998)Google Scholar
  8. 8.
    J.D. Posner, Mech. Res. Comm. 36, 22 (2009)zbMATHGoogle Scholar
  9. 9.
    M. von Smoluchowski, Bull. Acad. Sci. Cracovie, Classe Sci. Math. Natur 1, 182 (1903)Google Scholar
  10. 10.
    A. Würger, Rep. Prog. Phys. 73, 126601 (2010)ADSGoogle Scholar
  11. 11.
    J.L. Anderson, D.C. Prieve, Separation Purification Rev. 13, 67 (1984)Google Scholar
  12. 12.
    J.L. Anderson, Ann. Rev. Fluid Mech. 21, 61 (1989)ADSGoogle Scholar
  13. 13.
    R.W. O’Brien, L.R. White, J. Chem. Soc. Faraday Trans. II 74, 1607 (1978)Google Scholar
  14. 14.
    J. Gapinski, G. Nägele, A. Patkowski, J. Chem. Phys. 134, 024507 (2012)ADSGoogle Scholar
  15. 15.
    W. Luck, M. Klier, H. Wesslau, Ber. Bunsenges. Phys. Chem. 67, 75 (1963)Google Scholar
  16. 16.
    W. Luck, M. Klier, H. Wesslau, Ber. Bunsenges. Phys. Chem. 67, 84 (1963)Google Scholar
  17. 17.
    Y. Monovoukas, A. P. Gast, J. Colloid Interface Sci. 128, 533 (1989)Google Scholar
  18. 18.
    E.B. Sirota, et al., Phys. Rev. Lett. 62, 1524 (1989)ADSGoogle Scholar
  19. 19.
    T. Palberg, J. Phys.: Condens. Matter 11, R323 (1999)ADSGoogle Scholar
  20. 20.
    P. Wette, et al., J. Chem. Phys. 132, 131102 (2010)ADSGoogle Scholar
  21. 21.
    B. Derjaguin, L. Landau,Acta Physicochem. USSR 14, 633 (1941)Google Scholar
  22. 22.
    E.J.W. Verwey, T.G.H. Overbeek, Theory of the Stability of Lyotropic Colloids (Elsevier, Amsterdam, 1948)Google Scholar
  23. 23.
    M.O. Robbins, K. Kremer, G.S. Grest, J. Chem. Phys. 88, 3286 (1988)ADSGoogle Scholar
  24. 24.
    L. Shapran, et al., Colloids Surf. A 270, 220 (2005)Google Scholar
  25. 25.
    M. Brunner, et al., Phys. Rev. Lett. 92, 078301 (2004)ADSGoogle Scholar
  26. 26.
    Y. Levin, Rep. Prog. Phys. 65, 1577 (2002)ADSGoogle Scholar
  27. 27.
    L. Bocquet, E. Trizac, M. Aubouy, J. Chem. Phys. 117, 8138 (2002)ADSGoogle Scholar
  28. 28.
    R. Klein, et al., J. Phys.: Condens. Mat. 14, 7631 (2002)ADSGoogle Scholar
  29. 29.
    S. Alexander, et al., J. Chem. Phys. 80, 5776 (1984)ADSGoogle Scholar
  30. 30.
    D. Hessinger, M. Evers, T. Palberg, Phys. Rev. E 61, 5493 (2000)ADSGoogle Scholar
  31. 31.
    M. Medebach, et al., J. Chem. Phys. 123, 104903 (2005)ADSGoogle Scholar
  32. 32.
    L. Shapran, H.J. Schöpe, T. Palberg, J. Chem. Phys. 125, 194714 (2006)ADSGoogle Scholar
  33. 33.
    H.-J. Schöpe, Th. Decker, T. Palberg, J. Chem. Phys. 109, 10068 (1998)ADSGoogle Scholar
  34. 34.
    P. Wette, H.-J. Schöpe, T. Palberg, Colloids Surf. A 222, 311 (2003)Google Scholar
  35. 35.
    F. Carrique, F.J. Arroyo, A. V. Delgado, J. Colloid Interface Sci. 252, 126 (2002)Google Scholar
  36. 36.
    F. Carrique, et al., J. Phys. Chem. B 107, 3199 (2003)Google Scholar
  37. 37.
    F. Carrique, E. Ruiz-Reina, J. Phys. Chem. B 112, 11960 (2008)Google Scholar
  38. 38.
    F. Carrique, E. Ruiz-Reina, J. Phys. Chem. B 113, 8613 (2009)Google Scholar
  39. 39.
    S. Komagata, Res. Electrotech. Lab. Tokyo Comm. 348, 1 (1933)Google Scholar
  40. 40.
    T. Palberg, et al., J. Phys.: Condens. Matter 24, 464109 (2012)ADSGoogle Scholar
  41. 41.
    T. Palberg, H. Versmold, J. Phys. Chem. 93, 5296 (1989)Google Scholar
  42. 42.
    J.F. Miller, J. Colloid Interface Sci. 153, 266 (1992)Google Scholar
  43. 43.
    J.F. Miller, K. Schätzel, B. Vincent, J. Colloid Interface Sci. 143, 532 (1991)Google Scholar
  44. 44.
    W. Härtl, H. Versmold, J. Chem. Phys. 80, 1387 (1984)ADSGoogle Scholar
  45. 45.
    G. Nägele, Phys. Reports 272, 215 (1996)ADSGoogle Scholar
  46. 46.
    M. Medebach, T. Palberg, J. Phys. Condens. Matter 16, 5653 (2004)ADSGoogle Scholar
  47. 47.
    T. Palberg, et al., J. Phys.: Condens. Matter 16, S4039 (2004)ADSGoogle Scholar
  48. 48.
    H. Reiber, et al., J. Colloid Interface Sci. 309, 315 (2007)Google Scholar
  49. 49.
    M. Medebach, L. Shapran, T. Palberg, Colloid Surfaces B 56, 210 (2007)Google Scholar
  50. 50.
    V. Lobashkin, et al., Phys. Rev. Lett. 98, 176105 (2007)ADSGoogle Scholar
  51. 51.
    G. Giupponi, I. Pagonabarraga, Phys. Rev. Lett. 106, 248304 (2011)ADSGoogle Scholar
  52. 52.
    M. Medebach, L. Shapran, T. Palberg, Colloids Surf. B 56, 210 (2007)Google Scholar
  53. 53.
    M. Medebach, T. Palberg, J. Chem. Phys. 119, 3360 (2003)ADSGoogle Scholar
  54. 54.
    M. Medebach, T. Palberg, Colloids Surf. A 222, 175 (2003)Google Scholar
  55. 55.
    M. Medebach, T. Palberg, Prog. Colloid Polym. Sci. 123, 260 (2004)Google Scholar
  56. 56.
    T. Palberg, M. Würth, J. Colloid Interface Sci. 167, 221 (1994)Google Scholar
  57. 57.
    T. Okubo, A. Tsuchida, M. Stoimenova, Adv. Colloid Interface Sci. 162, 80 (2011)Google Scholar
  58. 58.
    W.D. Dozier, P.M. Chaikin, J. Phys. France 43, 843 (1982)Google Scholar
  59. 59.
    T. Palberg, K. Streicher, Nature 367, 51 (1994)ADSGoogle Scholar
  60. 60.
    T. Palberg, M. Würth, J. Phys. I (France) 6, 237 (1996)Google Scholar
  61. 61.
    T. Preis, R. Biehl, T. Palberg, Prog. Colloid Polym. Sci. 108, 129 (1998)Google Scholar
  62. 62.
    T. Araki, H. Tanaka, EPL 82, 18004 (2008)ADSGoogle Scholar
  63. 63.
    M. Medebach, J. Chem. Phys. 136, 044201 (2012)ADSGoogle Scholar
  64. 64.
    T. Bellini, et al., J. Chem. Phys. 103, 8228 (1995)ADSGoogle Scholar
  65. 65.
    M. Evers, et al., Phys. Rev. E 57, 6774 (1998)ADSGoogle Scholar
  66. 66.
    K. Schätzel, et al., Appl. Opt. 31, 770 (1992)ADSGoogle Scholar
  67. 67.
    N. Garbow, et al., Physica A 235, 291 (1997)ADSGoogle Scholar
  68. 68.
    N. Garbow, et al., J. Phys.: Condens. Matter 16, 3835 (2004)ADSGoogle Scholar
  69. 69.
    T. Okubo, Ber. Bunsenges. Phys. Chem. 91, 1064 (1987)MathSciNetGoogle Scholar
  70. 70.
    R. Galneder, et al., Biophys. J. 80, 2298 (2001)ADSGoogle Scholar
  71. 71.
    F. Strubbe, F. Beunis, K. Neyts, J. Colloid Interface Sci. 301, 302 (2006)Google Scholar
  72. 72.
    T.A. Wood, et al., Faraday Disc. 137, 319 (2008)ADSGoogle Scholar
  73. 73.
    I. Semenov, et al., J. Colloid Interface Sci. 337, 260 (2009)Google Scholar
  74. 74.
    D. Chan, et al., Chem. Soc., Faraday Trans. 1, 71, 1046 (1975)Google Scholar
  75. 75.
    F. Strubbe, et al., Phys. Rev. E 75, 031405 (2007)ADSGoogle Scholar
  76. 76.
    F. Carrique, et al., J. Phys. Chem. B 114, 6134 (2010)Google Scholar
  77. 77.
    I. Semenov, et al., Phys. Rev. E 87, 022302 (2013)ADSGoogle Scholar
  78. 78.
    V. Lobashkin, B. Dünweg, N. J. Phys. 6, 54 (2004)Google Scholar
  79. 79.
    H.M. Manzanilla-Granados, F. Jiménez-Ángeles, M. Lozada-Cassou, Colloids Surf. A 376, 59 (2011)Google Scholar
  80. 80.
    A Martín-Molina, et al., Colloids Surf. A 222, 155 (2003)Google Scholar
  81. 81.
    F. Jiménez-Ángeles, M. Lozada-Cassou, J. Phys. Chem. B 108, 7286 (2004)Google Scholar
  82. 82.
    A. Chatterji, J. Horbach, J. Phys.: Condens. Matter 22, 494102 (2010)Google Scholar
  83. 83.
    G.I. Guerrero-García, et al., J. Chem. Phys. 132, 054903 (2010)ADSGoogle Scholar
  84. 84.
    P.H. Wiersema, A.L. Loeb, J.T.G. Overbeek, J. Colloid Interface Sci. 22, 78 (1966)Google Scholar
  85. 85.
    F. Westermeier, et al., J. Chem. Phys. 137, 114504 (2012)ADSGoogle Scholar
  86. 86.
    P. Holmquist, G. Nägele, Phys. Rev Lett. 104, 058301 (2010)ADSGoogle Scholar
  87. 87.
    A.S. Khair, T.M. Squires, Phys. Fluids 21, 042001 (2009)ADSGoogle Scholar
  88. 88.
    G.S. Roberts, et al., J. Chem. Phys. 126, 194503 (2007)ADSzbMATHGoogle Scholar
  89. 89.
    G.S. Roberts, et al., Langmuir 24, 6530 (2008)Google Scholar
  90. 90.
    R. Sanchez, P. Bartlett, Soft Matter 7, 887 (2011)ADSGoogle Scholar
  91. 91.
    J.C. Crocker, D.G. Grier, J. Colloid Interface Sci. 179, 298 (1996)Google Scholar
  92. 92.
    F. Strubbe, F. Beunis, K. Neyts, Phys. Rev. Lett. 100, 218301 (2008)ADSGoogle Scholar
  93. 93.
    F. Strubbe, F. Beunis, K. Neyts, Phys. Rev. Lett. 108, 016101 (2012)ADSGoogle Scholar
  94. 94.
    I.D. Morrison, Colloids Surf. A 71, 1 (1993)Google Scholar
  95. 95.
    S.K. Sainis, et al., Langmuir 24, 1160 (2008)Google Scholar
  96. 96.
    C.P. Royall, E.M. Leunissen, A. van Blaaderen, J. Phys.: Condens. Matter 15, 53381 (2003)Google Scholar
  97. 97.
    F. Strubbe, et al., Phys. Rev. X 3, 021001 (2013)Google Scholar
  98. 98.
    D.C. Henry, Trans. Faraday Soc. 44, 1021 (1948)Google Scholar
  99. 99.
    P. Mitchell, FEBS Lett. 28, 1 (1972)Google Scholar
  100. 100.
    K.W. Foster, R.W. Smythe, Microbiol. Rev. 18, 572 (1980)Google Scholar
  101. 101.
    T. Ishikawa, J. Roy. Soc. Interface 6, 815 (2009)Google Scholar
  102. 102.
    A. Baskaran, M.C. Marcetti, Proc. Natl. Acad. Sci. 106, 15567 (2009)ADSGoogle Scholar
  103. 103.
    E.A. Gaffney, et al., Annu. Rev. Fluid Mech. 43, 501 (2011)MathSciNetADSGoogle Scholar
  104. 104.
    J. Koiller, K. Ehlers, R. Montgomery, J. Nonlinear Sci. 6, 507 (1996)MathSciNetADSzbMATHGoogle Scholar
  105. 105.
    E. Lauga, T.R. Powers, Rep. Prog. Phys. 72, 096601 (2009)MathSciNetADSGoogle Scholar
  106. 106.
    Piotr Garstecki , Marek Cieplak (guest ed.), J. Phys.: Condens. Matter 21, 204101 (2009) Special Section Containing Papers on Swimming at Low Reynolds NumbersGoogle Scholar
  107. 107.
    S.J. Ebbens, J.R. Howse, Soft Matter 6, 726 (2010)ADSGoogle Scholar
  108. 108.
    D.L. Koch, G. Subramanian, Ann. Rev. Fluid Mech. 43, 637 (2011)MathSciNetADSGoogle Scholar
  109. 109.
    T.M. Squires, S.R. Quake, Rev. Mod. Phys. 77, 977 (2005)ADSGoogle Scholar
  110. 110.
    W.F. Paxton, et al., Angew. Chem. Int. Ed. 45, 5420 (2006)Google Scholar
  111. 111.
    J.W. Swan, et al., Phys. Fluids 23, 071901 (2011)MathSciNetADSGoogle Scholar
  112. 112.
    E.M. Purcell, Am. J. Phys. 45, 3 (1977)ADSGoogle Scholar
  113. 113.
    E. Lauga, Soft Matter 7, 3060 (2011)ADSGoogle Scholar
  114. 114.
    R. Dreyfus, et al., Nature 437, 862 (2005)ADSGoogle Scholar
  115. 115.
    R. Dreyfus, J. Baudry, H.A. Stone, Eur. Phys. B 47, 161 (2005)ADSGoogle Scholar
  116. 116.
    N. Coq, et al., J. Phys.: Condens. Matter 21, 204109 (2009)ADSGoogle Scholar
  117. 117.
    G. Hwang, et al., Int. J. Robotics Res. 30, 806 (2011)Google Scholar
  118. 118.
    E. Lauga, D. Bartolo, Phys. Rev. E 78, 030901 (2008)ADSGoogle Scholar
  119. 119.
    R. Golestanian, A. Ajdari, J. Phys.: Condens. Matter 21, 204104 (2009)ADSGoogle Scholar
  120. 120.
    R. Kapral, J. Chem. Phys. 138, 020901 (2013)ADSGoogle Scholar
  121. 121.
    R. Golestanian, Phys. Rev. Lett. 108, 038303 (2012)ADSGoogle Scholar
  122. 122.
    H.H. Wensink, H. Löwen, J. Phys.: Condens. Matter 24, 464130 (2012)ADSGoogle Scholar
  123. 123.
    H.H. Wensink, et al., Prog. Natl. Acad. Sci. 109, 14308 (2012)ADSGoogle Scholar
  124. 124.
    J. Bialké, T. Speck, H. Löwen, Phys. Rev. Lett. 108, 168301 (2012)ADSGoogle Scholar
  125. 125.
    A.M. Menzel, H. Löwen, Phys. Rev. Lett. 110, 055702 (2013)ADSGoogle Scholar
  126. 126.
    A. Kaiser, H.H. Wensink, H. Löwen, Phys. Rev. Lett. 108, 268307 (2012)ADSGoogle Scholar
  127. 127.
    I. Theurkauff, et al., Phys. Rev. Lett. 108, 268303 (2012)ADSGoogle Scholar
  128. 128.
    J. Palacci, et al., Science 339, 936 (2013)ADSGoogle Scholar
  129. 1280.
    I. Buttinoni, et al., Phys. Rev. Lett. 110, 238301 (2013)ADSGoogle Scholar
  130. 129.
    A. Sen, et al., Faraday Discuss. 143, 15 (2009)ADSGoogle Scholar
  131. 130.
    M. Ibele, T.E. Mallouk, A. Sen, Angew. Chem. Int. Ed. 48, 3308 (2009)Google Scholar
  132. 131.
    A. Reinmüller, et al., J. Chem. Phys. 136, 164505 (2012)ADSGoogle Scholar
  133. 132.
    A. Reinmüller, H.J. Schöpe, T. Palberg, Langmuir 29, 1738 (2013)Google Scholar
  134. 133.
    M. Chandrasekar, S. Suresh, T. Senthilkumar, Renewable and Sustainable Energy Rev. 16, 3917 (2012)Google Scholar
  135. 134.
    F. Jülicher, J. Prost, Eur. Phys. J.E 29, 27 (2009)Google Scholar
  136. 135.
    J. Brady, J. Fluid Mech. 667, 216 (2011)MathSciNetADSzbMATHGoogle Scholar
  137. 136.
    M.C. Marchetti, et al., Rev. Mod. Phys. 85, 1143 (2013)ADSGoogle Scholar
  138. 137.
    R.F. Ismagilov, et al., Angew. Chem. Int. Ed. 41, 652 (2002)Google Scholar
  139. 138.
    W.F. Paxton, et al., J. Am. Chem. Soc. 126, 13424 (2004)Google Scholar
  140. 139.
    S. Fournier-Bidoz, et al., Chem. Comm. (4), 441 (2005)Google Scholar
  141. 140.
    P.M. Wheat, et al., Langmuir 26, 13052 (2010)Google Scholar
  142. 141.
    R. Golestanian, T.B. Liverpool, A. Adjari, Phys. Rev. Lett. 94, 220801 (2005)ADSGoogle Scholar
  143. 142.
    J.R. Howse, et al., Phys. Rev. Lett. 99, 048102 (2007)ADSGoogle Scholar
  144. 143.
    H. Keet, et al., J. Phys. Chem. A 114, 5462 (2010)Google Scholar
  145. 144.
    L.F. Valadares, et al., Small 6, 565 (2010)Google Scholar
  146. 145.
    R.N. Bearon, V. Magar, J. Plankton Res. 32, 1599 (2010)Google Scholar
  147. 146.
    R. Golestanian, T.B. Liverpool, A. Ajdari, New. J. Phys. 9, 126 (2007)ADSGoogle Scholar
  148. 147.
    X.C. Luu, J.P. Hsu, Sh. Tseng, J. Chem. Phys. 134, 064708 (2011)ADSGoogle Scholar
  149. 148.
    U.M. Cordova-Figueroa, J.F. Brady, Phys. Rev. Lett. 100, 158303 (2008)ADSGoogle Scholar
  150. 149.
    J.L. Moran, P.M. Wheat, J.D. Posner, Phys. Rev. E 81, 065302(R) (2010)ADSGoogle Scholar
  151. 150.
    N. Mano, A. Heller, J. Am. Chem. Soc. 127, 11574 (2005)Google Scholar
  152. 151.
    R. Laocharoensuk, J. Burdick, J. Wang, ACS Nano 2, 1069 (2008)Google Scholar
  153. 152.
    S. Chang, et al., Nature Materials 6, 235 (2007)ADSGoogle Scholar
  154. 153.
    P.E. Lammert, J. Prost, R. Bruinsma, J. Theor. Biol. 178, 387 (1996)Google Scholar
  155. 154.
    A. Majee, A. Würger, Phys. Rev. Lett. 108, 118301 (2012)ADSGoogle Scholar
  156. 155.
    A. Majee, A. Würger, Soft Matter 9, 2145 (2013)ADSGoogle Scholar
  157. 156.
    H.R. Jiang, N. Yoshinaga, M. Sano, Phys. Rev. Lett. 105, 268302 (2010)ADSGoogle Scholar
  158. 157.
    H.R. Jiang, et al., Phys. Rev. Lett. 102, 208301 (2009)ADSGoogle Scholar
  159. 158.
    I. Buttinoni, et al., J. Phys.: Condens. Matter 24, 284129 (2012)Google Scholar
  160. 159.
    G. Volpe, et al., Soft Matter 7, 8810 (2011)ADSGoogle Scholar
  161. 160.
    F. Kümmel, et al., Phys. Rev. Lett. 110, 198302 (2013)ADSGoogle Scholar
  162. 161.
    T.R. Kline, et al., J. Am. Chem. Soc. 126, 17150 (2005)Google Scholar
  163. 162.
    P.O. Staffeld, J.A. Quinn, J. Colloid Interface Sci. 130, 69 (1989)Google Scholar
  164. 163.
    P.O. Staffeld, J.A. Quinn, J. Colloid Interface Sci. 130, 88 (1989)Google Scholar
  165. 164.
    B.V.R. Tata, M. Rajalakshmi, A.K. Arora, Phys. Rev. Lett. 69, 3778 (1992)ADSGoogle Scholar
  166. 165.
    B.V.R. Tata, M. Rajalakshmi, A.K. Arora, Phys. Rev. Lett. and (erratum) Phys. Rev. Lett. 70, 2823 (1993)ADSGoogle Scholar
  167. 166.
    T. Palberg, M. Würth, Phys. Rev. Lett. 72, 786 (1994)ADSGoogle Scholar
  168. 167.
    B.V.R. Tata, M. Rajalakshmi, A. K. Arora, Phys. Rev. Lett. 72, 787 (1994)ADSGoogle Scholar
  169. 168.
    J. Yamanaka, et al., J. Am. Chem. Soc. 126, 7156 (2004)Google Scholar
  170. 169.
    J. Palacci, et al., Phys. Rev. Lett. 104, 138302 (2010)ADSGoogle Scholar
  171. 170.
    T. Palberg, et al., J. Phys. Chem. 96, 8180 (1992)Google Scholar
  172. 171.
    P. Wette, et al., J. Chem. Phys. 114, 7556 (2001)ADSGoogle Scholar
  173. 172.
    A. Kose, et al., J. Colloid Interface Sci. 44, 330 (1973)Google Scholar
  174. 173.
    A. Reinmüller, Ph.D. thesis, Mainz, 2013Google Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  • T. Palberg
    • 1
  • H. Schweinfurth
    • 1
  • T. Köller
    • 1
  • H. Müller
    • 1
  • H. J. Schöpe
    • 2
  • A. Reinmüller
    • 1
  1. 1.Institute of PhysicsJohannes Gutenberg UniversityMainzGermany
  2. 2.Max-Planck-Institute f. Polymer ResearchMainzGermany

Personalised recommendations