Advertisement

The European Physical Journal Special Topics

, Volume 222, Issue 11, pp 2819–2833 | Cite as

Force-driven micro-rheology

  • Th. Voigtmann
  • M. Fuchs
Review Shear Flow

Abstract

Within a microscopic formalism for the nonequilibrium response of colloidal suspensions driven by an external force, we study the active micro-rheology of a glass-forming colloidal suspensions. In this technique, a probe particle is subject to an external force, and its nonequilibrium dynamics is monitored. Strong external forcing delocalizes the particle from its nearest-neighbor cage, resulting in a pronounced force-thinning behavior of the single-particle friction. We discuss the dynamics in the vicinity of this delocalization transition, and how long-range transport is induced for a particle that is localized in the quiescent case.

Keywords

European Physical Journal Special Topic Colloidal Suspension Colloidal Dispersion Probe Particle Memory Kernel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T.A. Waigh, Rep. Prog. Phys. 68, 685 (2005)ADSCrossRefGoogle Scholar
  2. 2.
    P. Cicuta, A.M. Donald, Soft Matter 3, 1449 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    Y. Kimura, J. Phys. Soc. Jpn. 78, 041005 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    T.M. Squires, T.G. Mason, Annu. Rev. Fluid Mech. 42, 413 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    A. Erbe, M. Zientara, L. Baraban, C. Kreidler, P. Leiderer, J. Phys.: Condens. Matter 20, 404215 (2008)CrossRefGoogle Scholar
  6. 6.
    C. Gutsche, F. Kremer, M. Krüger, M. Rauscher, R. Weeber, J. Harting, J. Chem. Phys. 129, 084902 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    A.S. Khair, T.M. Squires, Phys. Rev. Lett. 105, 156001 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    J.S. Lintuvuori, K. Stratford, M.E. Cates, D. Marenduzzo, Phys. Rev. Lett. 105, 178302 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    J.P. Rich, J. Lammerding, G.H. McKinley, P.S. Doyle, Soft Matter 7, 9933 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    R. Candelier, O. Dauchot, Phys. Rev. Lett. 103, 128001 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    Y. Ding, N. Gravish, D.I. Goldman, Phys. Rev. Lett. 106, 028001 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    A. Seguin, Y. Bertho, P. Gondret, J. Crassous, Phys. Rev. Lett. 107, 048001 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    A. Fiege, M. Grob, A. Zippelius, Granular Matter 14, 247 (2012)CrossRefGoogle Scholar
  14. 14.
    A.W.C. Lau, B.D. Hoffman, A. Davies, J.C. Crocker, T.C. Lubensky, Phys. Rev. Lett. 91, 198101 (2003)ADSCrossRefGoogle Scholar
  15. 15.
    C. Wilhelm, Phys. Rev. Lett. 101, 028101 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    D. Robert, K. Aubertin, J.-C. Bacri, C. Wilhelm, Phys. Rev. E 85, 011905 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    D. Wirtz, Anuu. Rev. Biophys. 38, 301 (2009)CrossRefGoogle Scholar
  18. 18.
    M.B. Hastings, C.J. Olson Reichhardt, C. Reichhardt, Phys. Rev. Lett. 90, 098302 (2003)ADSCrossRefGoogle Scholar
  19. 19.
    P. Habdas, D. Schaar, A.C. Levitt, E.R. Weeks, Europhys. Lett. 67, 477 (2004)ADSCrossRefGoogle Scholar
  20. 20.
    S.R. Williams, D.J. Evans, Phys. Rev. Lett. 96, 015701 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    T.M. Squires, Langmuir 24, 1147 (2008)CrossRefGoogle Scholar
  22. 22.
    R.N. Zia, J.F. Brady, J. Fluid Mech. 658, 188 (2010)ADSCrossRefzbMATHGoogle Scholar
  23. 23.
    R.N. Zia, J.F. Brady, J. Rheol. (NY) 56, 1175 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    R.J. DePuit, T.M. Squires, J. Phys.: Condens. Matter 24, 464106 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    R.J. DePuit, T.M. Squires, J. Phys.: Condens. Matter 24, 464107 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    R.L. Jack, D. Kelsey, J. Garrahan, D. Chandler, Phys. Rev. E 78, 011506 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    D. Winter, J. Horbach, P. Virnau, K. Binder, Phys. Rev. Lett. 108, 028303 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    D. Winter, J. Horbach, J. Chem. Phys. 138, 12A512 (2013)CrossRefGoogle Scholar
  29. 29.
    I. Sriram, E.M. Furst, R.J. DePuit, T.M. Squires, J. Rheol. 53, 357 (2009)ADSCrossRefGoogle Scholar
  30. 30.
    I. Sriram, A. Meyer, E.M. Furst, Phys. Fluids 22, 062003 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    L.G. Wilson, A.W. Harrison, W.C.K. Poon, A.M. Puertas, Europhys. Lett. 93, 58007 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    E.M. Furst, Curr. Opin. Colloid Interface Sci. 10, 79 (2005)CrossRefGoogle Scholar
  33. 33.
    L.G. Wilson, A.W. Harrison, A.B. Schofield, J. Arlt, W.C.K. Poon, J. Phys. Chem. B 113, 3806 (2009)CrossRefGoogle Scholar
  34. 34.
    W. Götze, Complex Dynamics of Glass-Forming Liquids (Oxford University Press, 2009)Google Scholar
  35. 35.
    K. Kawasaki, J.D. Gunton, Phys. Rev. A 8, 2048 (1973)ADSCrossRefGoogle Scholar
  36. 36.
    D.J. Evans, G. Morriss, Statistical Mechanics of Nonequilibrium Liquids (Cambridge University Press, 2008)Google Scholar
  37. 37.
    M. Fuchs, M.E. Cates, Phys. Rev. Lett. 89, 248304 (2002)ADSCrossRefGoogle Scholar
  38. 38.
    M. Fuchs, M.E. Cates, J. Rheol. (NY) 53, 957 (2009)ADSCrossRefGoogle Scholar
  39. 39.
    I. Gazuz, A.M. Puertas, Th. Voigtmann, M. Fuchs, Phys. Rev. Lett. 102, 248302 (2009)ADSCrossRefGoogle Scholar
  40. 40.
    I. Gazuz, M. Fuchs, Phys. Rev. E 87, 032304 (2013)ADSCrossRefGoogle Scholar
  41. 41.
    Ch.J. Harrer, A.M. Puertas, Th. Voigtmann, M. Z. Phys. Chem. 226, 779 (2012)CrossRefGoogle Scholar
  42. 42.
    Ch.J. Harrer, Active and Nonlinear Microrheology of Dense Colloidal Suspensions, P.h.D thesis, Universität Konstanz, 2013Google Scholar
  43. 43.
    J.M. Brader, Th. Voigtmann, M. Fuchs, R.G. Larson, M.E. Cates, Proc. Natl. Acad. Sci. USA 106, 15186 (2009)ADSCrossRefGoogle Scholar
  44. 44.
    M.V. Gnann, I. Gazuz, A.M. Puertas, M. Fuchs, Th. Voigtmann, Soft Matter 7, 1390 (2011)ADSCrossRefGoogle Scholar
  45. 45.
    Ch.J. Harrer, D. Winter, J. Horbach, M. Fuchs, Th. Voigtmann, J. Phys.: Condens. Matter 24, 464105 (2012)ADSCrossRefGoogle Scholar
  46. 46.
    M.V. Gnann, Th. Voigtmann, Phys. Rev. E 86, 011406 (2012)ADSCrossRefGoogle Scholar
  47. 47.
    I.C. Carpen, J.F. Brady, J. Rheol. 49, 1483 (2005)ADSCrossRefGoogle Scholar
  48. 48.
    Th. Voigtmann, EPL 96, 36006 (2011)ADSCrossRefGoogle Scholar
  49. 49.
    B. Cichocki, W. Hess, Physica A 141, 475 (1987)ADSCrossRefGoogle Scholar
  50. 50.
    K. Kawasaki, Physica A 215, 61 (1995)ADSCrossRefGoogle Scholar
  51. 51.
    W. Hess, R. Klein, Adv. Phys. 32, 173 (1983)MathSciNetADSCrossRefGoogle Scholar
  52. 52.
    J.-P. Hansen, I.R. McDonald, Theory of Simple Liquids, 2nd edn. (Academic Press Limited, London, 1986)Google Scholar
  53. 53.
    T.M. Squires, J.F. Brady, Phys. Fluids 17, 073101 (2005)ADSCrossRefGoogle Scholar
  54. 54.
    A.M. Puertas, AIP Conf. Proc. 1319, 141 (2010)ADSCrossRefGoogle Scholar
  55. 55.
    M. Siebenbürger, M. Ballauff, Th. Voigtmann, Phys. Rev. Lett. 108, 255701 (2012)ADSCrossRefGoogle Scholar
  56. 56.
    Th. Voigtmann, Slow Dynamics in External Forces: Creep and Microrheology, in 4th International Symposium on Slow Dynamics in Complex Systems, edited by M. Tokuyama, I. Oppenheim, Vol. 1518 of AIP Conf. Proc. (AIP, 2013), p. 94Google Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  • Th. Voigtmann
    • 1
    • 2
    • 3
  • M. Fuchs
    • 1
  1. 1.Fachbereich PhysikUniversität KonstanzKonstanzGermany
  2. 2.ZukunftskollegUniversität KonstanzKonstanzGermany
  3. 3.Institut für Materialphysik im WeltraumKölnGermany

Personalised recommendations