The European Physical Journal Special Topics

, Volume 222, Issue 11, pp 2773–2786 | Cite as

Mesoscale hydrodynamics simulations of particle suspensions under shear flow: From hard to ultrasoft colloids

  • R. G. Winkler
  • S. P. Singh
  • C. -C. Huang
  • D. A. Fedosov
  • K. Mussawisade
  • A. Chatterji
  • M. Ripoll
  • G. Gompper
Review Shear Flow

Abstract

We discuss the nonequilibrium properties of rodlike and ultrasoft, star-polymer like colloidal particles in shear flow. Conformational, dynamical, as well as rheological aspects are addressed for a broad range of concentrations. For concentrated solutions of rodlike colloids, we study the nonequilibrium properties of a phase separated system, where a disordered phase coexists with a nematic phase. For starlike polymers we consider systems of various functionality, starting from linear polymers. The individual rods, polymers, or stars exhibit an intriguing dynamical behavior, which determines their macroscopic rheological properties. Despite the diversity on the colloidal level, the various systems exhibit a qualitatively similar macroscopic behavior, e.g., shear thinning, yet with some quantitative differences.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.C. Glotzer, M.J. Solomon, Nat. Mat. 6, 557 (2007)Google Scholar
  2. 2.
    S.M. Yang, S.H. Kim, J.M. Lim, G.R. Yi, J. Mater. Chem. 18, 2177 (2008)Google Scholar
  3. 3.
    H.R. Vutukuri, A.F. Demirrs, B. Peng, P.D.J. van Oostrum, A. Imhof, A. van Blaaderen, Angew. Chem. Int. Ed. Engl. 51, 11249 (2012)Google Scholar
  4. 4.
    L.L. Zhou, J. Roovers, Macromolecules 26, 963 (1993)ADSGoogle Scholar
  5. 5.
    A. Fernandez-Nieves, H.M. Wyss, J. Mattsson, D.A. Weitz (eds.), Microgel Suspensions: Fundamentals and Applications (Wiley-VCH, Weinheim, 2011)Google Scholar
  6. 6.
    M. Grzelczak, J. Vermant, E.M. Furst, L.M. Liz-Marzán, ACS Nano 4, 3591 (2010)Google Scholar
  7. 7.
    D.E. Smith, H.P. Babcock, S. Chu, Science 283, 1724 (1999)ADSGoogle Scholar
  8. 8.
    P. LeDuc, C. Haber, G. Boa, D. Wirtz, Nature 399, 564 (1999)ADSGoogle Scholar
  9. 9.
    P.S. Doyle, B. Ladoux, J.L. Viovy, Phys. Rev. Lett. 84, 4769 (2000)ADSGoogle Scholar
  10. 10.
    C.M. Schroeder, R.E. Teixeira, E.S.G. Shaqfeh, S. Chu, Phys. Rev. Lett. 95, 018301 (2005)ADSGoogle Scholar
  11. 11.
    S. Gerashchenko, V. Steinberg, Phys. Rev. Lett. 96, 038304 (2006)ADSGoogle Scholar
  12. 12.
    M. Harasim, B. Wunderlich, O. Peleg, M. Kröger, A.R. Bausch, Phys. Rev. Lett. 110, 108302 (2013)ADSGoogle Scholar
  13. 13.
    T. Liu, J. Chem. Phys. 90, 5826 (1989)ADSGoogle Scholar
  14. 14.
    C. Aust, M. Kröger, S. Hess, Macromolecules 32, 5660 (1999)ADSGoogle Scholar
  15. 15.
    C. Aust, S. Hess, M. Kröger, Macromolecules 35, 8621 (2002)ADSGoogle Scholar
  16. 16.
    C.M. Schroeder, R.E. Teixeira, E.S.G. Shaqfeh, S. Chu, Macromolecules 38, 1967 (2005)ADSGoogle Scholar
  17. 17.
    C.C. Huang, R.G. Winkler, G. Sutmann, G. Gompper, Macromolecules 43, 10107 (2010)ADSGoogle Scholar
  18. 18.
    M. Ripoll, R.G. Winkler, G. Gompper, Phys. Rev. Lett. 96, 188302 (2006)ADSGoogle Scholar
  19. 19.
    S.R. Keller, R. Skalak, J. Fluid Mech. 120, 27 (1982)ADSMATHGoogle Scholar
  20. 20.
    V. Kantsler, V. Steinberg, Phys. Rev. Lett. 95, 258101 (2005)ADSGoogle Scholar
  21. 21.
    H. Noguchi, G. Gompper, Phys. Rev. Lett. 98, 128103 (2007)ADSGoogle Scholar
  22. 22.
    S. Hess, M. Kröger, J. Phys.: Condens. Matter 16, S3835 (2004)ADSGoogle Scholar
  23. 23.
    Y.G. Tao, W.K. den Otter, W.J. Briels, Phys. Rev. Lett. 95, 237802 (2005)ADSGoogle Scholar
  24. 24.
    Y.G. Tao, W.K. den Otter, W.J. Briels, EPL 86, 56005 (2009)ADSGoogle Scholar
  25. 25.
    R.B. Bird, C.F. Curtiss, R.C. Armstrong, O. Hassager, Dynamics of Polymer Liquids, Vol. 2 (John Wiley & Sons, New York, 1987)Google Scholar
  26. 26.
    H.C. Öttinger, Stochastic Processes in Polymeric Fluids (Springer, Berlin, 1996)Google Scholar
  27. 27.
    R.G. Winkler, J. Chem. Phys. 133, 164905 (2010)ADSGoogle Scholar
  28. 28.
    A. Malevanets, R. Kapral, J. Chem. Phys. 110, 8605 (1999)ADSGoogle Scholar
  29. 29.
    A. Malevanets, R. Kapral, J. Chem. Phys. 112, 7260 (2000)ADSGoogle Scholar
  30. 30.
    R. Kapral, Adv. Chem. Phys. 140, 89 (2008)Google Scholar
  31. 31.
    G. Gompper, T. Ihle, D.M. Kroll, R.G. Winkler, Adv. Polym. Sci. 221, 1 (2009)Google Scholar
  32. 32.
    E. Tüzel, T. Ihle, D.M. Kroll, Phys. Rev. E 74, 056702 (2006)ADSGoogle Scholar
  33. 33.
    C.C. Huang, G. Gompper, R.G. Winkler, Phys. Rev. E 86, 056711 (2012)ADSGoogle Scholar
  34. 34.
    A. Malevanets, J.M. Yeomans, Europhys. Lett. 52, 231 (2000)ADSGoogle Scholar
  35. 35.
    M. Ripoll, K. Mussawisade, R.G. Winkler, G. Gompper, Europhys. Lett. 68, 106 (2004)ADSGoogle Scholar
  36. 36.
    K. Mussawisade, M. Ripoll, R.G. Winkler, G. Gompper, J. Chem. Phys. 123, 144905 (2005)ADSGoogle Scholar
  37. 37.
    R.G. Winkler, C.C. Huang, J. Chem. Phys. 130, 074907 (2009)ADSGoogle Scholar
  38. 38.
    C.C. Huang, A. Chatterji, G. Sutmann, G. Gompper, R.G. Winkler, J. Comput. Phys. 229, 168 (2010)MathSciNetADSMATHGoogle Scholar
  39. 39.
    R.G. Winkler, K. Mussawisade, M. Ripoll, G. Gompper, J. Phys.: Condens. Matter 16, S3941 (2004)ADSGoogle Scholar
  40. 40.
    M. Ripoll, P. Holmqvist, R.G. Winkler, G. Gompper, J.K.G. Dhont, M.P. Lettinga, Phys. Rev. Lett. 101, 168302 (2008)ADSGoogle Scholar
  41. 41.
    M. Ripoll, R.G. Winkler, K. Mussawisade, G. Gompper, J. Phys.: Condens. Matter 20, 404209 (2008)Google Scholar
  42. 42.
    S.P. Singh, R.G. Winkler, G. Gompper, Phys. Rev. Lett. 107, 158301 (2011)ADSGoogle Scholar
  43. 43.
    D.A. Fedosov, S.P. Singh, A. Chatterji, R.G. Winkler, G. Gompper, Soft Matter 8, 4109 (2012)ADSGoogle Scholar
  44. 44.
    S.P. Singh, D.A. Fedosov, A. Chatterji, R.G. Winkler, G. Gompper, J. Phys.: Condens. Matter 24, 464103 (2012)ADSGoogle Scholar
  45. 45.
    M. Ripoll, K. Mussawisade, R.G. Winkler, G. Gompper, Phys. Rev. E 72, 016701 (2005)ADSGoogle Scholar
  46. 46.
    W.C. Swope, H.C. Andersen, P.H. Berens, K.R. Wilson, J. Chem. Phys. 76, 637 (1982)ADSGoogle Scholar
  47. 47.
    M. Doi, S.F. Edwards, The Theory of Polymer Dynamics (Clarendon Press, Oxford, 1986)Google Scholar
  48. 48.
    R.G. Winkler, Phys. Rev. Lett. 97, 128301 (2006)ADSGoogle Scholar
  49. 49.
    T. Munk, O. Hallatschek, C.H. Wiggins, E. Frey, Phys. Rev. E 74, 041911 (2006)ADSGoogle Scholar
  50. 50.
    G.B. Jefferey, Proc. R. Soc. London, Ser. A 102, 161 (1922)ADSGoogle Scholar
  51. 51.
    E.J. Hinch, L.G. Leal, J. Fluid Mech. 52, 683 (1972)ADSMATHGoogle Scholar
  52. 52.
    L.G. Leal, E.J. Hinch, J. Fluid Mech. 55, 161 (1972)Google Scholar
  53. 53.
    J.K.G. Dhont, W.J. Briels,Rod-Like Brownian Particles in Shear Flow (Wiley-VCH, Weinheim, 2007), p. 216Google Scholar
  54. 54.
    F.P. Bretherton, J. Fluid Mech. 14, 284 (1962)MathSciNetADSMATHGoogle Scholar
  55. 55.
    H. Kobayashi, R. Yamamoto, Phys. Rev. E 81, 041807 (2010)ADSGoogle Scholar
  56. 56.
    B.J. Ackerson, P.N. Pusey, Phys. Rev. Lett. 61, 1033 (1988)ADSGoogle Scholar
  57. 57.
    P.D. Olmsted, P.M. Goldbart, Phys. Rev. A 46, 4966 (1992)ADSGoogle Scholar
  58. 58.
    S. Hess, Z. Naturforsch. A 31, 1034 (1976)ADSGoogle Scholar
  59. 59.
    S. Hess, J. Chem. Phys. 92, 792 (1990)MathSciNetGoogle Scholar
  60. 60.
    P.D. Olmsted, C. Lu, Phys. Rev. E 60, 4397 (1999)ADSGoogle Scholar
  61. 61.
    T.A.J. Lenstra, Z. Dogic, J.K.G. Dhont, J. Chem. Phys. 114, 10151 (2001)ADSGoogle Scholar
  62. 62.
    R. Larson, Macromolecules 23, 3983 (1990)ADSGoogle Scholar
  63. 63.
    M.P. Lettinga, Z. Dogic, H. Wang, J. Vermant, Langmuir 21, 8048 (2005)Google Scholar
  64. 64.
    J. Berret, D. Roux, G. Porte, P. Lindner, Europhys. Lett. 32, 137 (1995)ADSGoogle Scholar
  65. 65.
    T. Tiele, J. Berret, J. Rheol. (N.Y.) 45, 29 (2001)ADSGoogle Scholar
  66. 66.
    Z. Dogic, K.R. Purdy, E. Grelet, M. Adams, S. Fraden, Phys. Rev. E 69, 051702 (2004)ADSGoogle Scholar
  67. 67.
    M. Ripoll, Phys. Rev. E 83, 040701 (2011)ADSGoogle Scholar
  68. 68.
    M.P. Lettinga, J.K.G. Dhont, J. Phys.: Condens. Matter 16, S3929 (2004)ADSGoogle Scholar
  69. 69.
    P. Lindner, R.C. Oberthur, Colloid Polym. Sci. 266, 886 (1988)Google Scholar
  70. 70.
    P. Lindner, R.C. Oberthur, Physica B 156 & 157, 410 (1989)Google Scholar
  71. 71.
    A. Link, J. Springer, Macromolecules 26, 464 (1993)ADSGoogle Scholar
  72. 72.
    R.E. Teixeira, H.P. Babcock, E.S.G. Shaqfeh, S. Chu, Macromolecules 38, 581 (2005)ADSGoogle Scholar
  73. 73.
    A. Subbotin, A. Semenov, E. Manias, G. Hadziioannou, G. ten Brinke, Macromolecules 28, 3898 (1995)ADSGoogle Scholar
  74. 74.
    S.Q. Wang, J. Chem. Phys. 92, 7618 (1990)ADSGoogle Scholar
  75. 75.
    A. Celani, A. Puliafito, K. Turitsyn, Europhys. Lett. 70, 464 (2005)ADSGoogle Scholar
  76. 76.
    M. Chertkov, I. Kolokolov, A. Lebedev, K. Turitsyn, J. Fluid. Mech. 531, 251 (2005)MathSciNetADSGoogle Scholar
  77. 77.
    D. Das, S. Sabhapandit, Phys. Rev. Lett. 101, 188301 (2008)ADSGoogle Scholar
  78. 78.
    D. Petera, M. Muthukumar, J. Chem. Phys. 111, 7614 (1999)ADSGoogle Scholar
  79. 79.
    C.C. Hsieh, R.G. Larson, J. Rheol. 48, 995 (2004)ADSGoogle Scholar
  80. 80.
    Y. Gratton, G.W. Slater, Eur. Phys. J. E 17, 455 (2005)Google Scholar
  81. 81.
    C. Pierleoni, J.P. Ryckaert, Macromolecules 28, 5097 (1995)ADSGoogle Scholar
  82. 82.
    A. Puliafito, K. Turitsyn, Physica D 211, 9 (2005)MathSciNetADSMATHGoogle Scholar
  83. 83.
    P.P. Jose, G. Szamel, J. Chem. Phys. 128, 224910 (2008)ADSGoogle Scholar
  84. 84.
    G.L. He, R. Messina, H. Löwen, J. Chem. Phys. 132, 124903 (2010)ADSGoogle Scholar
  85. 85.
    J.J. López Cascales, S. Navarro, J. García de la Torre, Macromolecules 25, 3574 (1992)ADSGoogle Scholar
  86. 86.
    P.S. Doyle, E.S.G. Shaqfeh, A.P. Gast, J. Fluid. Mech. 334, 251 (1997)ADSMATHGoogle Scholar
  87. 87.
    A.V. Lyulin, D.B. Adolf, G.R. Davies, J. Chem. Phys. 111, 758 (1999)ADSGoogle Scholar
  88. 88.
    M. Chopra, R. Larson, J. Rheol. 46, 831 (2002)ADSGoogle Scholar
  89. 89.
    N.J. Woo, E.S.G. Shaqfeh, J. Chem. Phys. 119, 2908 (2003)ADSGoogle Scholar
  90. 90.
    S. Liu, B. Ashok, M. Muthukumar, Polymer 45, 1383 (2004)Google Scholar
  91. 91.
    R. Delgado-Buscalioni, Phys. Rev. Lett. 96, 088303 (2006)ADSGoogle Scholar
  92. 92.
    Y. Zhang, A. Donev, T. Weisgraber, B.J. Alder, M.G. Graham, J.J. de Pablo, J. Chem. Phys. 130, 234902 (2009)ADSGoogle Scholar
  93. 93.
    F.B. Usabiaga, R. Delgado-Buscalioni, Macromol. Theory Simul. 20, 466 (2011)Google Scholar
  94. 94.
    J.F. Ryder, J.M. Yeomans, J. Chem. Phys. 125, 194906 (2006)ADSGoogle Scholar
  95. 95.
    C.C. Huang, G. Sutmann, G. Gompper, R.G. Winkler, EPL 93, 54004 (2011)ADSGoogle Scholar
  96. 96.
    C.C. Huang, G. Gompper, R.G. Winkler, J. Phys.: Condens. Matter 24, 284131 (2012)Google Scholar
  97. 97.
    C.C. Huang, G. Gompper, R.G. Winkler, J. Phys.: Conf. Ser. 392, 012003 (2012)ADSGoogle Scholar
  98. 98.
    A. Lamura, R.G. Winkler, J. Chem. Phys. 137, 244909 (2012)ADSGoogle Scholar
  99. 99.
    P.G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University, Ithaca, 1979)Google Scholar
  100. 100.
    R.M. Jendrejack, J.J. de Pablo, M.D. Graham, J. Chem. Phys. 116, 7752 (2002)ADSGoogle Scholar
  101. 101.
    M. Rubinstein, R. Colby, Polymer Physics (Oxford University Press, Oxford, 2003)Google Scholar
  102. 102.
    A. Galuschko, L. Spirin, T. Kreer, A. Johner, C. Pastorino, J. Wittmer, J. Baschnagel, Langmuir 26, 6418 (2010)Google Scholar
  103. 103.
    W. Zylka, J. Chem. Phys. 94, 4628 (1991)ADSGoogle Scholar
  104. 104.
    M. Daoud, J.P. Cotton, J. Phys. France 43, 531 (1982)Google Scholar
  105. 105.
    G.S. Grest, K. Kremer, T.A. Witten, Macromolecules 20, 1376 (1987)ADSGoogle Scholar
  106. 106.
    G.S. Grest, K. Kremer, S.T. Milner, T.A. Witten, Macromolecules 22, 1904 (1989)ADSGoogle Scholar
  107. 107.
    C.N. Likos, H. Löwen, M. Watzlawek, B. Abbas, O. Jucknischke, J. Allgaier, D. Richter, Phys. Rev. Lett. 80, 4450 (1998)ADSGoogle Scholar
  108. 108.
    A. Jusufi, M. Watzlawek, H. Löwen, Macromolecules 32, 4470 (1999)ADSGoogle Scholar
  109. 109.
    C.N. Likos, Phys. Rep. 348, 267 (2001)ADSGoogle Scholar
  110. 110.
    L.J. Fetters, A.D. Kiss, D.S. Pearson, G.F. Quack, F.J. Vitus, Macromolecules 26, 647 (1993)ADSGoogle Scholar
  111. 111.
    J. Stellbrink, B. Lonetti, G. Rother, L. Willner, D. Richter, J. Phys.: Condens. Matter 20, 404206 (2008)Google Scholar
  112. 112.
    D. Vlassopoulos, G. Fytas, Adv. Polym. Sci. 236, 1 (2010)Google Scholar
  113. 113.
    S. Gupta, S.K. Kundu, J. Stellbrink, L. Willner, D. Richter, J. Phys.: Condens. Matter 24, 464102 (2012)ADSGoogle Scholar
  114. 114.
    T. Pakula, D. Vlassopoulos, G. Fytas, J. Roovers, Macromolecules 31, 8931 (1998)ADSGoogle Scholar
  115. 115.
    D. Vlassopoulos, G. Fytas, T. Pakula, J. Roovers, J. Phys.: Condens. Matter 13, R855 (2001)ADSGoogle Scholar
  116. 116.
    M.E. Helgeson, N.J. Wagner, D. Vlassopoulos, J. Rheol. 51, 297 (2007)ADSGoogle Scholar
  117. 117.
    B.M. Erwin, M. Cloitre, M. Gauthierd, D. Vlassopoulos, Soft Matter 6, 2825 (2010)ADSGoogle Scholar
  118. 118.
    M. Ripoll, R.G. Winkler, G. Gompper, Eur. Phys. J. E 23, 349 (2007)Google Scholar
  119. 119.
    D.R. Foss, J.F. Brady, J. Fluid Mech. 401, 243 (1999)ADSMATHGoogle Scholar
  120. 120.
    M. Krüger, F. Weysser, M. Fuchs, Eur. Phys. J. E 34, 88 (2011)Google Scholar
  121. 121.
    C.J. Harrer, D. Winter, J. Horbach, M. Fuchs, T. Voigtmann, J. Phys.: Condens. Matter 24, 464105 (2012)ADSGoogle Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  • R. G. Winkler
    • 1
  • S. P. Singh
    • 1
  • C. -C. Huang
    • 1
  • D. A. Fedosov
    • 1
  • K. Mussawisade
    • 1
  • A. Chatterji
    • 1
  • M. Ripoll
    • 1
  • G. Gompper
    • 1
  1. 1.Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced SimulationForschungszentrum JülichJülichGermany

Personalised recommendations