The European Physical Journal Special Topics

, Volume 222, Issue 10, pp 2677–2686 | Cite as

Phase description of the Huber-Braun neuron model for mammalian cold receptors

  • J.A. FreundEmail author
  • C. Finke
  • H.A. Braun
  • U. Feudel
Regular Article Applications in Biology and Medicine


The spiking activity of mammalian cold receptors is described by the Huber-Braun neuron model. Sweeping temperature as a control parameter across a biologically relevant range this model exhibits a complex bifurcation structure seen in the sequence of interspike intervals. The model’s distinctive feature is the interaction between a fast spike generating dynamics and a slow subthreshold oscillation. Viewing the spike generation as a cycle, the dynamics may also be modeled phenomenologically by two phases, one for the spike cycle and the second for the slow subthreshold oscillation. In fact, a phase model of temperature-dependent mammalian cold receptors was already proposed by Roper et al. (2000). Here we follow their approach and investigate to what extent this model is able to reproduce the bifurcation patterns of the Huber-Braun model. Special attention is paid to the tonic firing to bursting transition observed in the low temperature range.


European Physical Journal Special Topic Bifurcation Diagram Phase Model Adiabatic Approximation Spike Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Rieke, W. Bialek, D. Warland, Spikes: Exploring the Neural Code (MIT Press, Cambridge Mass., 1999)Google Scholar
  2. 2.
    A. Neiman, D.F. Russell, Phys. Rev. Lett. 86, 3443 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    A. Neiman, D.F. Russell, Phys. Rev. Lett. 88, 138103 (2002)ADSCrossRefGoogle Scholar
  4. 4.
    S. Liepelt, J.A. Freund, L. Schimansky-Geier, A. Neiman, D.F. Russell, J. Theor. Biol. 237, 30 (2005)MathSciNetCrossRefGoogle Scholar
  5. 5.
    H.A. Braun, H. Bade, H. Hensel, Pflug. Arch. Eur. J. Phys. 386, 1 (1980)CrossRefGoogle Scholar
  6. 6.
    G.B. Ermentrout, N. Kopell, SIAM-J.-Appl.-Math. 46, 233 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    P. Roper, P.C. Bressloff, A. Longtin, Neural Comput. 12, 1067 (2000)CrossRefGoogle Scholar
  8. 8.
    A. Longtin, K. Hinzer, Neural Comput. 8, 215 (1996)CrossRefGoogle Scholar
  9. 9.
    H.A. Braun, K. Voigt, M.T. Huber, Nova Acta Leopoldina NF 88 332: Nonlinear Dynamics and the Spatiotemporal Principles in Biology (Wissenschaftliche Verlagsgesellschaft, Stuttgart, 2004), p. 293Google Scholar
  10. 10.
    U. Feudel, A. Neiman, X. Pei, W. Wojtenek, H.A. Braun, M.T. Huber, F. Moss, CHAOS 10, 231 (2000)MathSciNetADSCrossRefzbMATHGoogle Scholar
  11. 11.
    C. Masoller, M.C. Torrent, J. Garcia-Ojalvo, Phys. Rev. E 78, 041907 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    C. Finke, S. Postnova, J. Vollmer, H.A. Braun, Math. Biosci. 214, 109 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    C. Finke, S. Postnova, E. Rosa, J.A. Freund, M.T. Huber, K. Voigt, F. Moss, H.A. Braun, U. Feudel, Eur. Phys. J. Special Topics 187, 199 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    S. Postnova, K. Voigt, H.A. Braun, J. Biol. Phys. 33, 129 (2007)CrossRefGoogle Scholar
  15. 15.
    C. Finke, J.A. Freund, E. Rosa, H.A. Braun, U. Feudel, CHAOS 20, 045107 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    H.A. Braun, K. Voigt, M.T. Huber, BioSystems 71, 39 (2003)CrossRefGoogle Scholar
  17. 17.
    W. Braun, B. Eckhardt, H.A. Braun, M.T. Huber , Phys. Rev. E 62, 6352 (2000)ADSCrossRefGoogle Scholar
  18. 18.
    H.A. Braun, M.T. Huber, N. Anthes, K. Voigt, A. Neiman, X. Pei, F. Moss, Neurocomputing 32-33, 51 (2000)CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  • J.A. Freund
    • 1
    • 2
    Email author
  • C. Finke
    • 1
  • H.A. Braun
    • 3
  • U. Feudel
    • 1
    • 2
    • 4
  1. 1.Theoretical Physics/Complex Systems Research Group, ICBM, Carl von Ossietzky Universität OldenburgOldenburgGermany
  2. 2.Research Center Neurosensory Science, Carl von Ossietzky Universität OldenburgOldenburgGermany
  3. 3.Institute of Physiology, Deutschhausstrasse 1-2, Philipps-UniversityMarburgGermany
  4. 4.Institute for Physical Science and Technology, University of MarylandMDUSA

Personalised recommendations