The European Physical Journal Special Topics

, Volume 222, Issue 10, pp 2655–2666 | Cite as

When the leak is weak – how the first-passage statistics of a biased random walk can approximate the ISI statistics of an adapting neuron

  • T. Schwalger
  • D. Miklody
  • B. LindnerEmail author
Regular Article Applications in Biology and Medicine


Sequences of first-passage times can describe the interspike intervals (ISI) between subsequent action potentials of sensory neurons. Here, we consider the ISI statistics of a stochastic neuron model, a leaky integrate-and-fire neuron, which is driven by a strong mean input current, white Gaussian current noise, and a spike-frequency adaptation current. In previous studies, it has been shown that without a leak current, i.e. for a so-called perfect integrate-and-fire (PIF) neuron, the ISI density can be well approximated by an inverse Gaussian corresponding to the first-passage-time density of a biased random walk. Furthermore, the serial correlations between ISIs, which are induced by the adaptation current, can be described by a geometric series. By means of stochastic simulations, we inspect whether these results hold true in the presence of a modest leak current. Specifically, we measure mean and variance of the ISI in the full model with leak and use the analytical results for the perfect IF model to relate these cumulants of the ISI to effective values of the mean input and noise intensity of an equivalent perfect IF model. This renormalization procedure yields semi-analytical approximations for the ISI density and the ISI serial correlation coeffcient in the full model with leak. We find that both in the absence and the presence of an adaptation current, the ISI density can be well approximated in this way if the leak current constitutes only a weak modification of the dynamics. Moreover, also the serial correlations of the model with leak are well reproduced by the expressions for a PIF model with renormalized parameters. Our results explain, why expressions derived for the rather special perfect integrate-and-fire model can nevertheless be often well fit to experimental data.


Leak Current European Physical Journal Special Topic Noise Intensity Interspike Interval Renormalization Procedure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V.S. Anishchenko, V.V. Astakhov, A.B. Neiman, T.E. Vadivasova, L. Schimansky-Geier, Nonlinear Dynamics of Chaotic and Stochastic Systems (Springer, Berlin, 2002)Google Scholar
  2. 2.
    P. Hänggi, P. Talkner, M. Borkovec, Rev. Mod. Phys. 62, 251 (1990)ADSCrossRefGoogle Scholar
  3. 3.
    G.L. Gerstein, B. Mandelbrot, Biophys. J. 4, 41 (1964)CrossRefGoogle Scholar
  4. 4.
    S. Redner, A Guide to First-Passage Processes (Cambridge University Press, Cambridge, UK, 2001)Google Scholar
  5. 5.
    L. Gammaitoni, P. Hänggi, P. Jung, F. Marchesoni, Rev. Mod. Phys. 70, 223 (1998)ADSCrossRefGoogle Scholar
  6. 6.
    V.S. Anishchenko, A.B. Neiman, F. Moss, L. Schimansky-Geier, Phys-Usp. 42, 7 (1999)ADSCrossRefGoogle Scholar
  7. 7.
    A. Pikovsky, J. Kurths, Phys. Rev. Lett. 78, 775 (1997)MathSciNetADSCrossRefzbMATHGoogle Scholar
  8. 8.
    B. Lindner, M. Kostur, L. Schimansky-Geier, Fluct. Noise Lett. 1, R25 (2001)CrossRefGoogle Scholar
  9. 9.
    B. Lindner, L. Schimansky-Geier, Phys. Rev. Lett. 89, 230602 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    B. Lindner, Phys. Rev. E 73, 022901 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    B. Lindner, T. Schwalger, Phys. Rev. Lett. 98, 210603 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    D.R. Cox, Renewal Theory (Methuen, London, 1962)Google Scholar
  13. 13.
    R.B. Stein, Biophys. J. 5, 173 (1965)ADSCrossRefGoogle Scholar
  14. 14.
    R.B. Stein, Biophys. J. 7, 37 (1967)ADSCrossRefGoogle Scholar
  15. 15.
    P. Johannesma, Neural Networks, edited by E. Caianiello (Springer, Berlin, 1968), p. 116Google Scholar
  16. 16.
    E. Schrödinger, Physik. Z. 16, 289 (1915)Google Scholar
  17. 17.
    J. Benda, A.V.M. Herz, Neural Comp. 15, 2523 (2003)CrossRefzbMATHGoogle Scholar
  18. 18.
    Y.H. Liu, X.J. Wang, J. Comp. Neurosci. 10, 25 (2001)CrossRefGoogle Scholar
  19. 19.
    K. Fisch, T. Schwalger, B. Lindner, A. Herz, J. Benda, J. Neurosci. 32, 17332 (2012)CrossRefGoogle Scholar
  20. 20.
    T. Schwalger, K. Fisch, J. Benda, B. Lindner, PLoS Comput. Biol. 6, e1001026 (2010)MathSciNetCrossRefGoogle Scholar
  21. 21.
    A.N. Burkitt, Biol. Cybern. 95, 1 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    G.E. Uhlenbeck, L.S. Ornstein, Phys. Rev. 36, 823 (1930)ADSCrossRefzbMATHGoogle Scholar
  23. 23.
    A. Bulsara, T.C. Elston, C.R. Doering, S.B. Lowen, K. Lindenberg, Phys. Rev. E 53, 3958 (1996)ADSCrossRefGoogle Scholar
  24. 24.
    A.V. Holden, Models of the Stochastic Activity of Neurones (Springer-Verlag, Berlin, 1976)Google Scholar
  25. 25.
    O. Avila-Akerberg, M.J. Chacron, Exp. Brain Res. (2011)Google Scholar
  26. 26.
    R.D. Vilela, B. Lindner, J. Theor. Biol. 257, 90 (2009)MathSciNetCrossRefGoogle Scholar
  27. 27.
    S. Ostojic, J. Neurophysiol. 106, 361 (2011)CrossRefGoogle Scholar
  28. 28.
    H. Risken, The Fokker-Planck Equation (Springer, Berlin, 1984)Google Scholar
  29. 29.
    P. Reimann, Phys. Rep. 361, 57 (2002)MathSciNetADSCrossRefzbMATHGoogle Scholar
  30. 30.
    F.T. Arecchi, A. Politi, Phys. Rev. Lett. 45, 1219 (1980)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  1. 1.Bernstein Center for Computational Neuroscience and Physics Department of Humboldt UniversityBerlinGermany

Personalised recommendations