The European Physical Journal Special Topics

, Volume 222, Issue 10, pp 2647–2653 | Cite as

Computational modeling of chemotactic signaling and aggregation of microglia around implantation site during deep brain stimulation

  • A.N. SilchenkoEmail author
  • P.A. Tass
Regular Article Applications in Biology and Medicine


It is well established that prolonged electrical stimulation of brain tissue causes massive release of ATP in the extracellular space. The released ATP and the products of its hydrolysis, such as ADP and adenosine, become the main elements mediating chemotactic sensitivity and motility of microglial cells via subsequent activation of P2Y2,12 as well as A3A and A2A adenosine receptors. The size of the sheath around the electrode formed by the microglial cells is an important criterion for the optimization of the parameters of electrical current delivered to brain tissue. Here, we study a purinergic signaling pathway underlying the chemotactic motion of microglia towards the implanted electrode during deep brain stimulation. We present a computational model describing formation of a stable aggregate around the implantation site due to the joint chemo-attractive action of ATP and ADP together with a mixed influence of extracellular adenosine. The model was built in accordance with the classical Keller-Segel approach and includes an equation for the cells’ density as well as equations describing the hydrolysis of extracellular ATP via successive reaction steps ATP →ADP →AMP →adenosine. The results of our modeling allowed us to reveal the dependence of the width of the encapsulating layer around the electrode on the amount of ATP released due to permanent electrical stimulation. The dependences of the aggregates’ size on the parameter governing the nonlinearity of interaction between extracellular adenosine and adenosine receptors are also analyzed.


Deep Brain Stimulation Microglial Cell European Physical Journal Special Topic Adenosine Receptor Implantation Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Deutschl, et al., New Eng. J. Med. 355, 896 (2006)CrossRefGoogle Scholar
  2. 2.
    P. Tass, et al., Ann. Neurol. 72, 816 (2012)CrossRefGoogle Scholar
  3. 3.
    P.A. Tass, Biol. Cyber. 89, 81 (2003)CrossRefzbMATHGoogle Scholar
  4. 4.
    V.S. Polikov, et al., Biomaterials 27, 5368 (2006)CrossRefGoogle Scholar
  5. 5.
    A.N. Silchenko, P.A. Tass, Biol. Cybern. 98, 61 (2008)CrossRefzbMATHGoogle Scholar
  6. 6.
    K. Färber, et al., Glia 56, 331 (2008)CrossRefGoogle Scholar
  7. 7.
    W.G. Junger, Nat. Rev. Immunol. 11, 201 (2011)CrossRefGoogle Scholar
  8. 8.
    S. Honda, et al., J. Neurosc. 211, 1975 (2001)Google Scholar
  9. 9.
    S.E. Haynes, et al., Nat. Neurosci. 9, 1512 (2006)CrossRefGoogle Scholar
  10. 10.
    Y. Chen, et al., Science 314, 1792 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    A.G. Orr, et al., Nat. Neurosci. 12, 872 (2009)CrossRefGoogle Scholar
  12. 12.
    E.F. Keller, L.A. Segel, J. Theor. Biol. 26, 399 (1970)CrossRefzbMATHGoogle Scholar
  13. 13.
    H.G. Othmer, A. Stevens, SIAM J. Appl. Math. 57, 1044 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    T. Hillen, K. Painter, Adv. Appl. Math. 26, 280 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    H. Kettenmann, B.R. Ransom, Neuroglia (Oxford University Press, Oxford/New York, 1995), p. 60Google Scholar
  16. 16.
    M. Luca, A. Chavez-Rossi, L. Edelstein-Keshet, Mogilner A., Bull. Math. Biol. 65, 693 (2003)CrossRefGoogle Scholar
  17. 17.
    K. Penner, B. Ermentrout, D. Swigon, SIAM J. Appl. Dyn. Sys. 11, 629 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    R. Corriden, P.A. Insel, Puriner. Sig. 8, 58 (2012)Google Scholar
  19. 19.
    M. Kronlage, et al., Science Sig. 3, 1 (2010)Google Scholar
  20. 20.
    M.R. Bennett, L. Farnell, W.G. Gibson, J. Theor. Biol. 261, 1 (2009)CrossRefGoogle Scholar
  21. 21.
    P.V. Moghe, R.D. Nelson, R.T. Tranquillo, J. Immunol. Meth. 180, 193 (1995)CrossRefGoogle Scholar
  22. 22.
    E.L. Gordon, J.D. Pearson, L. Slakey, J. Biol. Chem. 261, 15496 (1995)Google Scholar
  23. 23.
    C.M. Anderson, J.P. Bergher, R.A. Swanson, J. Neurochem. 88 246 (2004)CrossRefGoogle Scholar
  24. 24.
    A.A. Medovikov, BIT 38, 372 (1998)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  1. 1.Institute of Neuroscience and Medicine 7 – Neuromodulation, Research Center JuelichJuelichGermany
  2. 2.Department of NeuromodulationUniversity of CologneCologneGermany

Personalised recommendations