Advertisement

The European Physical Journal Special Topics

, Volume 222, Issue 10, pp 2633–2646 | Cite as

Anti-phase wave patterns in a ring of electrically coupled oscillatory neurons

  • A.S. DmitrichevEmail author
  • V.I. Nekorkin
  • R. Behdad
  • S. Binczak
  • J.-M. Bilbault
Regular Article Applications in Biology and Medicine

Abstract

Space-time dynamics of the network system modeling collective behavior of electrically coupled nonlinear cells is investigated. The dynamics of a local cell is described by the dimensionless Morris–Lecar system. It is shown that such a system yields a special class of traveling localized collective activity so called “anti-phase wave patterns”. The mechanisms of formation of the patterns are discussed and the region of their existence is obtained by using the weakly coupled oscillators theory.

Keywords

European Physical Journal Special Topic Stochastic System Homoclinic Orbit Stable Limit Cycle Neighboring Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.D. Murray, Mathematical Biology (Springer-Verlag, Berlin, 1993)Google Scholar
  2. 2.
    A.T. Winfree, The geometry of Biological Time (Springer-Verlag, New-York, 1980)Google Scholar
  3. 3.
    A.C. Scott, Neuroscience: a Mathematical Premier (Springer-Verlag, Berlin, 2002)Google Scholar
  4. 4.
    G.B. Ermentrout, D.H. Terman, Mathematical Foundations of Neuroscience (Springer, New York, 2010)Google Scholar
  5. 5.
    V.I. Nekorkin, M.G. Velarde, Sinergetic Phenomena in Active Lattices (Springer, Berlin, 2002)Google Scholar
  6. 6.
    J.P. Keener, SIAM J. Appl. Math. 47, 556 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    J.C. Comte, S. Morfu, P. Marquie, Phys. Rev. E 64, 027102-1 (2001)ADSCrossRefGoogle Scholar
  8. 8.
    S. Binczak, J.M. Bilbault, Int. J. Bif. Chaos 14, 1819 (2004)CrossRefzbMATHGoogle Scholar
  9. 9.
    M.C. Cross, P.C. Hohenberg, Rev. Mod. Phys. 65, 851 (1993)ADSCrossRefGoogle Scholar
  10. 10.
    B. Malomed, in Encyclopedia of Nonlinear Science, edited by A. Scott (Routledge, New York, 2005), p. 639Google Scholar
  11. 11.
    V.N. Biktashev, M.A. Tsyganov, Phys. Rev. Lett. 107, 134101-1 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    E.R. Kandel, J.H. Schwartz, T.M. Jessell, Principles of Neural Science (Prentice-Hall Intern. Inc., New Jersey, 1991)Google Scholar
  13. 13.
    C. Morris, H. Lecar, Biophys. J. 35, 193 (1981)ADSCrossRefGoogle Scholar
  14. 14.
    K. Tsumoto, H. Kitajima, T. Yoshinaga, K. Aihara, H. Kawakami, Neurocomputing 69, 293 (2006)CrossRefGoogle Scholar
  15. 15.
    V.S. Anishchenko, V. Astakhov, A. Neiman, T. Vadivasova, L. Schimansky-Geier, Nonlinear Dynamics of Chaotic and Stochastic Systems (Springer, Berlin, 2007)Google Scholar
  16. 16.
    I. Malkin, Metodi Puankare i Liapunova v teorii nelineinix kolebanii (Gostexizdat, Moscow, 1949)Google Scholar
  17. 17.
    I. Malkin, Nekotorye zadachi teorii nelineinix kolebanii (Gostexizdat, Moscow, 1956)Google Scholar
  18. 18.
    J. Neu, SIAM J. Appl. Math. 37, 307 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    G. Ermentrout, N. Kopell, SIAM J. Math. Anal. 15, 215 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence (Springer, New York, 1984)Google Scholar
  21. 21.
    F.C. Hoppensteadt, E.M. Izhikevich, Weakly Connected Neural Networks (Springer, New York, 1997)Google Scholar
  22. 22.
    T. Lewis, J. Rinzel, Comp. Neurosci. 14, 283 (2003)CrossRefGoogle Scholar
  23. 23.
    J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (Springer, New York, 1983)Google Scholar
  24. 24.
    G. Ermentrout, N. Kopell, J. Math. Bio. 29, 33 (1991)MathSciNetGoogle Scholar
  25. 25.
    T. Williams, G. Bowtell, J. Comput. Neurosci. 4, 47 (1997)CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  • A.S. Dmitrichev
    • 1
    Email author
  • V.I. Nekorkin
    • 1
    • 2
  • R. Behdad
    • 3
  • S. Binczak
    • 3
  • J.-M. Bilbault
    • 3
  1. 1.Institute of Applied Physics of RASNizhny NovgorodRussia
  2. 2.Lobachevsky State University of Nizhny Novgorod, National Research UniversityNizhny NovgorodRussia
  3. 3.LE2I CNRS UMR 6306, University of BurgundyDijonFrance

Personalised recommendations