The European Physical Journal Special Topics

, Volume 222, Issue 10, pp 2623–2631

Delayed feedback applied to breathing in humans

Regular Article Applications in Biology and Medicine


We studied the response of healthy volunteers to the delayed feedback generated from the breathing signals. Namely, in the freely-breathing volunteers the breathing signal was recorded, delayed by τ seconds and fed back to the same volunteer in real time in the form of a visual and auditory stimulus of low intensity, i.e. the stimulus was crucially non-intrusive. In each case volunteers were instructed to breathe in the way which was most comfortable for them, and no explanation about the kind of applied stimulus was provided to them. Each volunteer experienced 10 different delay times ranging between 10% and 100% of the average breathing period without external stimulus. It was observed that in a significant proportion of subjects (11 out of 24) breathing was slowed down in the presence of delayed feedback with moderate delay. Also, in 6 objects out of 24 the delayed feedback was able to induce transition from nearly periodic to irregular breathing. These observations are consistent with the phenomena observed in numerical simulation of the models of periodic and chaotic self-oscillations with delays, and also in experiments with simpler self-oscillating systems.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V.S. Anishchenko, A.G. Balanov, N.B. Janson, N.B. Igosheva, G.V. Bordyugov, Int. J. Bif. Chaos 4, 2339 (2000)Google Scholar
  2. 2.
    V.S. Anishchenko, A.G. Balanov, N.B. Janson, N.B. Igosheva, G.V. Bordyugov, Discrete Dyn. Nat. Soc. 4, 201 (2000)CrossRefMATHGoogle Scholar
  3. 3.
    C. Schfer, M.G. Rosenblum, J. Kurths, H.-H. Abel, Nature 392, 239 (1998)ADSCrossRefGoogle Scholar
  4. 4.
    S. Rzeczinski, A.G. Balanov, N.B. Janson, P.V.E. McClintock, Phys. Rev. E 66, 051909 (2002)ADSCrossRefGoogle Scholar
  5. 5.
    M.D. Prokhorov, V.I. Ponomarenko, V.I. Gridnev, M.B. Bodrov, A.B. Bespyatov, Phys. Rev. E 68, 041913 (2003)ADSCrossRefGoogle Scholar
  6. 6.
    A.G. Balanov, N.B. Janson, O.V. Sosnovtseva, D.E. Postnov, Synchronization: From Simple to Complex (Springer, Berlin-Heidelberg, 2009)Google Scholar
  7. 7.
    K. Pyragas, Phys. Lett. A 170, 421 (1992)ADSCrossRefGoogle Scholar
  8. 8.
    K. Pyragas, Phys. Lett. A 206, 323 (1992)MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    J.D. Farmer, Physica D 4, 366 (1982)MathSciNetADSCrossRefMATHGoogle Scholar
  10. 10.
    J. Weiner, F.W. Schneider, K. Bar-Eli, J. Chem. Phys. 93, 2704 (1989)CrossRefGoogle Scholar
  11. 11.
    P.W. Roesky, S.I. Doumbouya, F.W. Schneider, J. Phys. Chem. 97, 398 (1993)CrossRefGoogle Scholar
  12. 12.
    I. Fischer, O. Hess, W. Elsäasser, E. Göbel, Phys. Rev. Lett. 73, 2188 (1994)ADSCrossRefGoogle Scholar
  13. 13.
    W. Just, D. Reckwerth, J. Moöckel, E. Reibold, H. Benner, Phys. Rev. Lett. 81, 562 (1998)ADSCrossRefGoogle Scholar
  14. 14.
    J. Xu, K.W. Chung, Physica D 180, 17 (2003)MathSciNetADSCrossRefMATHGoogle Scholar
  15. 15.
    A.G. Balanov, N.B. Janson, E. chöll, Phys. Rev. E 71, 016222 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    N.B. Janson, A.G. Balanov, E. Schöll, Phys. Rev. Lett. 93, 010601 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    A.G. Balanov, N.B. Janson, E. Schöll, Physica D 199, 1 (2004)ADSCrossRefMATHGoogle Scholar
  18. 18.
    E. Schöll, A.G. Balanov, N.B. Janson, A. Neiman , Stoch. Dyn. 5, 281 (2005)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    N.B. Janson, A.G. Balanov, E. Schöll, Control of noise-induced dynamics. Handbook of Chaos Control, Second completely revised and enlarged edition, edited by E. Schöll, H.G. Schuster (2007), p. 223Google Scholar
  20. 20.
    A.S. Pikovsky, M.G. Rosenblum, G.V. Osipov, J. Kurths, Physica D 104, 219 (1997)MathSciNetADSCrossRefMATHGoogle Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  1. 1.Department of Mathematical SciencesLoughborough University, LoughboroughLeicestershireUK
  2. 2.Department of Mathematics and Applied MathematicsUniversity of Cape TownRondeboschSouth Africa

Personalised recommendations