The European Physical Journal Special Topics

, Volume 222, Issue 10, pp 2583–2593 | Cite as

Bistable sensors based on broken symmetry phenomena: The residence time difference vs. the second harmonic method

  • A. NikitinEmail author
  • N.G. StocksEmail author
  • A.R. BulsaraEmail author
Regular Article Applications in Chemistry, Physics and Engineering


A periodically driven noisy bistable system can be used as a sensor of a dc target signal. In the presence of the dc signal the symmetry of the potential energy function that underpins the sensor dynamics can be broken, leading to even harmonics of the driving frequency in the power spectrum. Both the power of the second harmonic and the mean residence time difference can be used for an estimation of the dc signal. In this paper we introduce a method for the power spectrum estimation from the experimental time series. This method can be considered to be an alternative to methods based on the Fourier transform. The presented method is faster for computation than the Fast Fourier Transform, and it allow us to estimate the power contained in peaks (or features) without their mixture with the power spectrum background. Using this method we compute the power of the second harmonic in the response power spectrum and compare the accuracy of the second harmonic method and the mean residence time difference (RTD) via the Shannon mutual information. We find that the RTD, generally, yields better performance in bistable noisy sensors.


Mutual Information European Physical Journal Special Topic Noise Intensity Stochastic Resonance Potential Energy Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    See e.g. P. Ripka, Magnetic Sensors and Magnetometers (Artech, Boston, 2001)Google Scholar
  2. 2.
    A.R. Bulsara, et al., Phys. Rev. E 67, 016120 (2003)MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    B. McNamara, K. Wiesenfeld, R. Roy, Phys. Rev. Lett. 60, 2626 (1988)ADSCrossRefGoogle Scholar
  4. 4.
    R. Benzi, A. Sutera, A. Vilpiani, J. Phys. A 14, L453 (1981)ADSCrossRefGoogle Scholar
  5. 5.
    C. Nicolis, J. Stat. Phys. 70, 3 (1993)ADSCrossRefzbMATHGoogle Scholar
  6. 6.
    S. Fauve, F. Heslot, Phys. Lett. A 97, 5 (1983)ADSCrossRefGoogle Scholar
  7. 7.
    R. Rouse, S. Han, J.E. Lukens, Appl. Phys. Lett. 66, 108 (1995)ADSCrossRefGoogle Scholar
  8. 8.
    A. Grigorenko, P. Nikitin,IEEE Trans. Magn. 31, 2491 (1995)ADSCrossRefGoogle Scholar
  9. 9.
    A. Grigorenko, P. Nikitin, A. Slavin, P. Zhou, J. Appl. Phys. 76, 6335 (1994)ADSCrossRefGoogle Scholar
  10. 10.
    R.L. Badzey, P. Mohanty, Nature 437, 995 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    S.M. Bezrukov, I. Vodyanoy, Nature 378, 362 (1995)ADSCrossRefGoogle Scholar
  12. 12.
    P. Jung, Phys. Lett. A 207, 93 (1995)ADSCrossRefGoogle Scholar
  13. 13.
    D.S. Leonard, L.E. Reichl, Phys. Rev. E 49, 1734 (1994)ADSCrossRefGoogle Scholar
  14. 14.
    A. Longtin, A. Bulsara, F. Moss, Phys. Rev. Lett. 67, 656 (1991)ADSCrossRefGoogle Scholar
  15. 15.
    A. Longtin, A. Bulsara, D. Pierson, F. Moss, Biol. Cyb. 70, 569 (1994)CrossRefzbMATHGoogle Scholar
  16. 16.
    J.K. Douglass, L. Wilkens, E. Pantazelou, F. Moss, Nature 365, 337 (1993)ADSCrossRefGoogle Scholar
  17. 17.
    J.E. Levin, J.P. Miller, Nature 380, 165 (1996)ADSCrossRefGoogle Scholar
  18. 18.
    P. Babinec, Phys. Lett. A 225, 179 (1997)MathSciNetADSCrossRefzbMATHGoogle Scholar
  19. 19.
    A. Krawiecki, J.A. Holyst, Physica A 317 (3), 597 (2003)ADSCrossRefzbMATHGoogle Scholar
  20. 20.
    K. Wiesenfeld, F. Moss, Nature 373, 33 (1995)ADSCrossRefGoogle Scholar
  21. 21.
    A. Bulsara, L. Gammaitoni, Phys. Today 49, 39 (1996)CrossRefGoogle Scholar
  22. 22.
    L. Gammaitoni, P. Hänggi, P. Jung, F. Marchesoni, Rev. Mod. Phys. 70, 223 (1998)ADSCrossRefGoogle Scholar
  23. 23.
    V.S. Anishchenko, A.B. Neiman, F. Moss, L. Schimansky-Geier, Uspekhi Fiz. Nauk 169, 7 (1999) [engl. transl. Physics-uspekhi 42, 7 (1999)]CrossRefGoogle Scholar
  24. 24.
    V.S. Anishchenko, M.A. Safonova, L.O. Chua, Int. J. Bifurcation Chaos Appl. Sci. Eng. 4, 441 (1994)CrossRefzbMATHGoogle Scholar
  25. 25.
    T.L. Carroll, L.M. Pecora, Phys. Rev. Lett. 70, 576 (1993)ADSCrossRefGoogle Scholar
  26. 26.
    A. Crisanti, et al., J. Phys. A: Math. Gen. 27, L597 (1994)MathSciNetADSCrossRefzbMATHGoogle Scholar
  27. 27.
    W. Korneta, Physica D 219, 93 (2006)ADSCrossRefzbMATHGoogle Scholar
  28. 28.
    N.G. Stocks, Phys. Rev. Lett. 84, 2310 (2000)ADSCrossRefGoogle Scholar
  29. 29.
    J.J. Collins, C.C. Chow, T.T. Imhoff, Nature 376, 236 (1995)ADSCrossRefGoogle Scholar
  30. 30.
    A. Neiman, L. Schimansky-Geier, F. Moss, Phys. Rev. E 56, R9 (1997)ADSCrossRefGoogle Scholar
  31. 31.
    V.V. Osipov, E.V. Ponizovskaya, Phys. Rev. E 61, 4603 (2000)ADSCrossRefGoogle Scholar
  32. 32.
    L. Gammaitoni, A.R. Bulsara, Phys. Rev. Lett. 88, 230601 (2002)ADSCrossRefGoogle Scholar
  33. 33.
    A. Nikitin, N.G. Stocks, A.R. Bulsara, Phys. Rev. E 68, 036133 (2003)ADSCrossRefGoogle Scholar
  34. 34.
    B. Shulgin, A. Neiman, V. Anishchenko, Phys. Rev. Lett. 75 (1995) 4157ADSCrossRefGoogle Scholar
  35. 35.
    A. Neiman, B. Shulgin, V. Anishchenko, W. Ebeling, L. Schimansky–Geier, J. Fround, Phys. Rev. Lett. 75 (1996) 4299ADSCrossRefGoogle Scholar
  36. 36.
    C.E. Shannon, W. Weaver, The Mathematical Theory of Communication (Univ of Illinois Press, 1949)Google Scholar
  37. 37.
    A. Bulsara, A. Zador, Phys. Rev. E 54, R2185 (1996)ADSCrossRefGoogle Scholar
  38. 38.
    J. Robinson, D. Asraf, A. Bulsara, M. Inchiosa, Phys. Rev. Lett. 81, 2850 (1998)ADSCrossRefGoogle Scholar
  39. 39.
    M. Inchiosa, J. Robinson, A. Bulsara, Phys. Rev. Lett. 85, 3369 (2000)ADSCrossRefGoogle Scholar
  40. 40.
    J. Robinson, J. Rung, A. Bulsara, M. Inchiosa, Phys. Rev. E 63, 011107 (2001)ADSCrossRefGoogle Scholar
  41. 41.
    A. Nikitin, N.G. Stocks, A.R. Bulsara, Phys. Rev. E 68, 016103 (2003)ADSCrossRefGoogle Scholar
  42. 42.
    A. Nikitin, N.G. Stocks, A.R. Bulsara, Phys. Rev. E 76, 041138 (2007)ADSCrossRefGoogle Scholar
  43. 43.
    R.I. Stratonovich, Topics in the Theory of Random Noise, Vol. 1 (Gordon and Breach, New York, 1963)Google Scholar
  44. 44.
    N.G. Stocks, Il Nuovo Cimento D 17, 925 (1995)ADSCrossRefGoogle Scholar
  45. 45.
    W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical recipes in C: The art of scientific computing (Cambridge University Press, Cambridge, 1992), Website

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  1. 1.School of Engineering, University of WarwickCoventryUK
  2. 2.School of Life Sciences, University of WarwickCoventryUK
  3. 3.Space and Naval Warfare Systems Center PacificSan DiegoUSA

Personalised recommendations