Advertisement

The European Physical Journal Special Topics

, Volume 222, Issue 10, pp 2517–2529 | Cite as

Excitable elements controlled by noise and network structure

  • B. SonnenscheinEmail author
  • M.A. Zaks
  • A.B. Neiman
  • L. Schimansky-Geier
Regular Article Nonlinear Dynamics of Stochastic Systems

Abstract

We study collective dynamics of complex networks of stochastic excitable elements, active rotators. In the thermodynamic limit of infinite number of elements, we apply a mean-field theory for the network and then use a Gaussian approximation to obtain a closed set of deterministic differential equations. These equations govern the order parameters of the network. We find that a uniform decrease in the number of connections per element in a homogeneous network merely shifts the bifurcation thresholds without producing qualitative changes in the network dynamics. In contrast, heterogeneity in the number of connections leads to bifurcations in the excitable regime. In particular we show that a critical value of noise intensity for the saddle-node bifurcation decreases with growing connectivity variance. The corresponding critical values for the onset of global oscillations (Hopf bifurcation) show a non-monotone dependency on the structural heterogeneity, displaying a minimum at moderate connectivity variances.

Keywords

Hopf Bifurcation Coupling Strength European Physical Journal Special Topic Degree Distribution Noise Intensity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Lindner, J. García-Ojalvo, A. Neiman, L. Schimansky-Geier, Phys. Rep. 392, 321 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    V.S. Anishchenko, V. Astakhov, A. Neiman, T. Vadisova, L. Schimansky-Geier, Nonlinear Dynamics of Chaotic and Stochastic Systems (Springer-Verlag, Berlin, 2007)Google Scholar
  3. 3.
    O. Sporns, Networks of the Brain (MIT Press, 2010)Google Scholar
  4. 4.
    V.S. Anishchenko, T.E. Vadivasova, D.E. Postnov, M.A. Safonova, Int. J. Bifurcation Chaos 02, 633 (1992)MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization: A universal concept in nonlinear sciences (Cambridge Univ. Press, UK, 2003)Google Scholar
  6. 6.
    A. Balanov, N. Janson, D. Postnov, O. Sosnovtseva, Synchronization: From Simple to Complex (Springer-Verlag, Berlin, 2010)Google Scholar
  7. 7.
    M.A. Zaks, X.R. Sailer, L. Schimansky-Geier, A.B. Neiman, Chaos 15, 026117 (2005)MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    A. Arenas, A. Díaz-Guilera, J. Kurths, Y. Moreno, C. Zhou, Phys. Rep. 469, 93 (2008)MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence (Springer-Verlag, Berlin, 1984)Google Scholar
  10. 10.
    A.T. Winfree, J. Theor. Biol. 16, 15 (1967)CrossRefGoogle Scholar
  11. 11.
    D. Cumin, C.P. Unsworth, Physica D 226, 181 (2007)MathSciNetADSCrossRefzbMATHGoogle Scholar
  12. 12.
    M. Breakspear, S. Heitmann, A. Daffertshofer, Front. Hum. Neurosci. 4, 190 (2010)CrossRefGoogle Scholar
  13. 13.
    S.H. Strogatz, Physica D 143, 1 (2000)MathSciNetADSCrossRefzbMATHGoogle Scholar
  14. 14.
    J.A. Acebrón, L.L. Bonilla, C.J. Pérez Vicente, F. Ritort, R. Spigler, Rev. Mod. Phys. 77, 137 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    S. Shinomoto, Y. Kuramoto, Prog. Theor. Phys. 75, 1105 (1986)ADSCrossRefGoogle Scholar
  16. 16.
    M. Kostur, J. Luczka, L. Schimansky-Geier, Phys. Rev. E 65, 051115 (2002)ADSCrossRefGoogle Scholar
  17. 17.
    C.J. Tessone, A. Scirè, R. Toral, P. Colet, Phys. Rev. E 75, 016203 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    L.M. Childs, S.H. Strogatz, Chaos 18, 043128 (2008)MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    K.H. Nagai, H. Kori, Phys. Rev. E 81, 065202(R) (2010)ADSCrossRefGoogle Scholar
  20. 20.
    L.F. Lafuerza, P. Colet, R. Toral, Phys. Rev. Lett. 105, 084101 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    C.J. Tessone, D.H. Zanette, R. Toral, Eur. Phys. J. B 62, 319 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    C. Kurrer, K. Schulten, Phys. Rev. E 51, 6213 (1995)ADSCrossRefGoogle Scholar
  23. 23.
    B. Sonnenschein, L. Schimansky-Geier, Phys. Rev. E 85, 051116 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    T. Ichinomiya, Phys. Rev. E 70, 026116 (2004)ADSCrossRefGoogle Scholar
  25. 25.
    B. Sonnenschein, F. Sagués, L. Schimansky-Geier, Eur. Phys. J. B 86, 12 (2013)ADSCrossRefMathSciNetGoogle Scholar
  26. 26.
    J.D. Crawford, K.T.R. Davies, Physica D 125, 1 (1999)MathSciNetADSCrossRefzbMATHGoogle Scholar
  27. 27.
    T.D. Frank, Nonlinear Fokker-Planck Equations (Springer-Verlag, Berlin Heidelberg, 2005)Google Scholar
  28. 28.
    H. Sakaguchi, S. Shinomoto, Y. Kuramoto, Prog. Theor. Phys 79, 600 (1988)MathSciNetADSCrossRefGoogle Scholar
  29. 29.
    J.G. Restrepo, E. Ott, B.R. Hunt, Phys. Rev. E 71, 036151 (2005)MathSciNetADSCrossRefGoogle Scholar
  30. 30.
    T. Pereira, D. Eroglu, G.B. Bagci, U. Tirnakli, H.J. Jensen, Phys. Rev. Lett. 110, 234103 (2013)ADSCrossRefGoogle Scholar
  31. 31.
    D.-S. Lee, Phys. Rev. E 72, 1 (2005)Google Scholar
  32. 32.
    M.A. Zaks, A.B. Neiman, S. Feistel, L. Schimansky-Geier, Phys. Rev. E 68, 066206 (2003)MathSciNetADSCrossRefGoogle Scholar
  33. 33.
    E. Ott, T.M. Antonsen, Chaos 18, 037113 (2008)MathSciNetADSCrossRefGoogle Scholar
  34. 34.
    A. Dhooge, W. Govaerts, Y.A. Kuznetsov, ACM TOMS 29, 141 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    M.E.J. Newman, Phys. Rev. Lett. 89, 208701 (2002)ADSCrossRefGoogle Scholar
  36. 36.
    M. Boguná, R. Pastor-Satorras, Phys. Rev. E 66, 047104 (2002)ADSCrossRefGoogle Scholar
  37. 37.
    R. Mannella, A Gentle, Introduction to the Integration of Stochastic Differential Equations edited by J.A. Freund and T. Pöschel, Stochastic Processes in Physics, Chemistry, and Biology, Vol. 557, (Springer-Verlag, Berlin Heidelberg, 2000), p. 353Google Scholar
  38. 38.
    F. Viger, M. Latapy, Efficient and Simple Generation of Random Simple Connected Graphs with Prescribed Degree Sequence, edited by L. Wang, Comput. Combin., Vol. 3595 (Springer Berlin Heidelberg, 2005), p. 440Google Scholar
  39. 39.
    G. Csárdi, T. Nepusz, InterJournal Complex Systems, 1695 (2006)Google Scholar
  40. 40.
    L.R. Varshney, B.L. Chen, E. Paniagua, D.H. Hall, D.B. Chklovskii, PLoS Comput. Biol. 7, e1001066 (2011)CrossRefGoogle Scholar
  41. 41.
    B. Sonneschein, L. Schimansky-Geier, [arXiv: 1308.5629] [cond-mat.stat-mech] (2013)

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  • B. Sonnenschein
    • 1
    • 2
    Email author
  • M.A. Zaks
    • 3
  • A.B. Neiman
    • 4
  • L. Schimansky-Geier
    • 1
    • 2
  1. 1.Department of PhysicsHumboldt-Universität zu BerlinBerlinGermany
  2. 2.Bernstein Center for Computational Neuroscience BerlinBerlinGermany
  3. 3.Institute of Mathematics, Humboldt-Universität zu BerlinBerlinGermany
  4. 4.Department of Physics and AstronomyOhio UniversityAthensUSA

Personalised recommendations