Advertisement

The European Physical Journal Special Topics

, Volume 222, Issue 10, pp 2509–2515 | Cite as

Consequential noise-induced synchronization of indirectly coupled self-sustained oscillators

  • E.V. PankratovaEmail author
  • V.N. Belykh
Regular Article Nonlinear Dynamics of Stochastic Systems

Abstract

We consider the dynamics of identical self-sustained oscillators coupled via a common linear system (beam), which is perturbed by noise. We demonstrate that increasing the noise intensity induces complete synchronization between the oscillators and, surprisingly, their in-phase synchronization with the beam. This new phenomenon of in-phase synchronization of both the oscillators and the oscillating beam arises when the noise intensity exceeds a threshold value, and can not appear in the deterministic case where the beam stably oscillates in anti-phase with the synchronized oscillators (as it is in the case of the Huygens clocks synchronization). Similar behavior persists for slightly non-identical oscillators.

Keywords

European Physical Journal Special Topic Noise Intensity Deterministic Case Complete Synchronization Cluster Synchronization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.T. Huber, J.C. Krieg, H.A. Braun, X. Pei, A. Neiman, F. Moss, Neurocomputing 32, 823 (2000)CrossRefGoogle Scholar
  2. 2.
    A.S. Pikovsky, J. Kurths, Phys. Rev. Lett. 78, 775 (1997)MathSciNetADSCrossRefzbMATHGoogle Scholar
  3. 3.
    W. Horsthemke, R. Lefever, Noise-Induced Transitions, Springer Series in Synergetics, Vol. 15 (Berlin: Springer-Verlag, 1984)Google Scholar
  4. 4.
    R. Benzi, A. Sutera, A. Vulpiani, J. Phys. A 14, 453 (1981)MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    V.S. Anishchenko, A.B. Neiman, M.A.Safonova, J. Stat. Phys. 70, 183 (1993)ADSCrossRefzbMATHGoogle Scholar
  6. 6.
    A. Neiman, A. Silchenko, V. Anishchenko, L. Schimansky-Geier, Phys. Rev. E. 58, 7118 (1998)ADSCrossRefGoogle Scholar
  7. 7.
    V. Anishchenko, A. Neiman, F. Moss, L. Schimansky-Geier, Physics Uspekhi 42, 7 (1999)ADSCrossRefGoogle Scholar
  8. 8.
    V. Anishchenko, A. Neiman, Stochastic synchronization Stochastic Dynamics” edited by L. Schimansky-Geier, T. Poschel, Lecture notes in physics (Springer, 1997), p. 155Google Scholar
  9. 9.
    V. Anishchenko, S. Nikolaev, J. Kurths, Phys. Rev. E. 76, 046216 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    V. Anishchenko, T. Vadivasova, G. Strelkova, Eur. Phys. J. Special Topics. 187, 109 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    A.S. Pikovsky, Phys. Lett. A 165, 33 (1992)MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    A.S. Matsumoto, I. Tsuda, J. Stat. Phys. 31, 87 (1983)MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    A.S. Pikovsky, Radiophys. Quantum Electron. 27, 576 (1984)Google Scholar
  14. 14.
    R. Toral, C.R. Mirasso, E. Hernandez-Garcia, O. Piro, Chaos 11, 665 (2001)ADSCrossRefzbMATHGoogle Scholar
  15. 15.
    R.V. Jensen, Am. J. Phys. 70, 607 (2001)ADSCrossRefGoogle Scholar
  16. 16.
    C.S. Zhou, J. Kurths, Chaos 13, 401 (2003)ADSCrossRefGoogle Scholar
  17. 17.
    V.N. Belykh, E.V. Pankratova, A.Y. Pogromsky, Dynamics and Control of Hybrid Mechanical Systems, edited by G. Leonov, H. Nijmeijer, A. Pogromsky and A. Fradkov (World Scientific Publishing Co. Pte. Ltd., Series B, Singapore, 2010), p. 181Google Scholar
  18. 18.
    L.N. Belyustina, V.N. Belykh, Differents. Uravneniya 9, 403 (1973)zbMATHGoogle Scholar
  19. 19.
    E.V. Pankratova, V.N. Belykh, Phys. Lett. A 376, 3076 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    I. Belykh, V. Belykh, K. Nevidin, M. Hasler, Chaos 13, 165 (2003)MathSciNetADSCrossRefzbMATHGoogle Scholar
  21. 21.
    V. Belykh, I. Belykh, M. Hasler, Physica D 195, 159 (2004)MathSciNetADSCrossRefzbMATHGoogle Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  1. 1.Department of MathematicsVolga State AcademyNizhny NovgorodRussia

Personalised recommendations