Advertisement

The European Physical Journal Special Topics

, Volume 222, Issue 10, pp 2497–2507 | Cite as

Multistable randomly switching oscillators: The odds of meeting a ghost

  • I. BelykhEmail author
  • V. Belykh
  • R. Jeter
  • M. Hasler
Regular Article Nonlinear Dynamics of Stochastic Systems

Abstract

We consider oscillators whose parameters randomly switch between two values at equal time intervals. If random switching is fast compared to the oscillator’s intrinsic time scale, one expects the switching system to follow the averaged system, obtained by replacing the random variables with their mean. The averaged system is multistable and one of its attractors is not shared by the switching system and acts as a ghost attractor for the switching system. Starting from the attraction basin of the averaged system’s ghost attractor, the trajectory of the switching system can converge near the ghost attractor with high probability or may escape to another attractor with low probability. Applying our recent general results on convergent properties of randomly switching dynamical systems [1, 2], we derive explicit bounds that connect these probabilities, the switching frequency, and the chosen initial conditions.

Keywords

Ghost Lyapunov Function European Physical Journal Special Topic Stochastic Resonance Stable Limit Cycle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Hasler, V. Belykh, I. Belykh, SIAM J. Appl. Dyn. Syst. 12, 1007 (2013)MathSciNetCrossRefGoogle Scholar
  2. 2.
    M. Hasler, V. Belykh, I. Belykh, SIAM J. Appl. Dyn. Syst. 12, 1031 (2013)MathSciNetCrossRefGoogle Scholar
  3. 3.
    V.S. Afraimovich, N.N. Verichev, M.I. Rabinovich, Radiophys. Quant. Electr. 29, 795 (1986)MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    V. Anishchenko, A. Neiman, Stochastic synchronization, “Stochastic Dynamics”, edited by L. Schimansky-Geier, T. Poschel, Lecture Notes in Physics (Springer, 1997), p. 155Google Scholar
  5. 5.
    V. Anishchenko, S. Nikolaev, J. Kurths, Phys. Rev. E 76, 046216 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    V. Anishchenko, T. Vadivasova, G. Strelkova, Eur. Phys. J. Special Topics 187, 109 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    K. Wiesenfeld, F. Moss, Nature 373, 33 (1995)ADSCrossRefGoogle Scholar
  8. 8.
    V.S. Anishchenko, A.B. Neiman, M.A. Safonova, J. Stat. Phys. 70, 183 (1993)ADSCrossRefzbMATHGoogle Scholar
  9. 9.
    A. Neiman, A. Silchenko, V. Anishchenko, L. Schimansky-Geier, Phys. Rev. E 58, 7118 (1998)ADSCrossRefGoogle Scholar
  10. 10.
    V. Anishchenko, A. Neiman, F. Moss, L. Schimansky-Geier, Physics Uspekhi 42, 7 (1999)ADSCrossRefGoogle Scholar
  11. 11.
    T. Stojanovsky, L. Kocarev, U. Parlitz, R. Harris, Phys. Rev. E 55, 4035 (1997)MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    I. Belykh, V. Belykh, M. Hasler, Physica D 195, 188 (2004)MathSciNetADSCrossRefzbMATHGoogle Scholar
  13. 13.
    M. Hasler, I. Belykh, IEICE Trans. Fund. E88-A, 2647 (2005)CrossRefGoogle Scholar
  14. 14.
    M. Porfiri, D.J. Stilwell, E.M. Bollt, J.D. Skufca, Physica D 224, 102 (2006)MathSciNetADSCrossRefzbMATHGoogle Scholar
  15. 15.
    M. Porfiri, R. Pigliacampo, SIAM J. Appl. Dynam. Sys. 7, 825 (2008)MathSciNetADSCrossRefzbMATHGoogle Scholar
  16. 16.
    T. Gorochowski, M. di Bernardo, C. Groerson, Phys. Rev. E81, 056212 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    P. De Lellis, M. di Bernardo, F. Garofalo, M. Porfiri, IEEE Trans. Circuits Syst., I: Fund. Theory Appl. 57, 2132 (2010)MathSciNetCrossRefGoogle Scholar
  18. 18.
    F. Sorrentino, E. Ott, Phys. Rev. Lett. 100, 114101 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    P. So, B. Cotton, E. Barreto, Chaos 18, 037114 (2008)MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    C. Tse, M. di Bernardo, Proc. IEEE 90, 768 (2002)CrossRefGoogle Scholar
  21. 21.
    C. Beck, Commun. Math. Phys. 130, 51 (1990)ADSCrossRefzbMATHGoogle Scholar
  22. 22.
    A. Skorokhod, F. Hoppensteadt, H. Salehi, Random perturbation methods (Springer-Verlag, New York, 2002)Google Scholar
  23. 23.
    M.I. Freidlin, A.D. Wentzell, Random perturbations of dynamical systems (Springer-Verlag, New York, 1998)Google Scholar
  24. 24.
    X. Mao, C. Yuan, Stochastic differential equations with Markovian switching (Imperial College Press, London, 2006)Google Scholar
  25. 25.
    Y. Bakhtin, T. Hurth, Nonlinearity 25, 2937 (2012)MathSciNetADSCrossRefzbMATHGoogle Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  1. 1.Department of Mathematics & Statistics and Neuroscience InstituteGeorgia State UniversityAtlantaUSA
  2. 2.Department of MathematicsVolga State AcademyNizhny NovgorodRussia
  3. 3.Advanced School of General and Applied Physics, University of Nizhny NovgorodNizhny NovgorodRussia
  4. 4.School of Computer and Communication Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland

Personalised recommendations