The European Physical Journal Special Topics

, Volume 222, Issue 10, pp 2465–2479 | Cite as

Models of active Brownian motors based on internal oscillations

  • Yu.M. RomanovskyEmail author
  • A.V. Kargovsky
  • W. EbelingEmail author
Regular Article Nonlinear Dynamics of Stochastic Systems


We analyze the dynamics of driven translations or rotations based on models with internal oscillations. In particular we discuss several new mechanisms of motors driven by chemical energy. First we study the simple depot model and give analytical solutions including efficiency and stochastic effects. Then we introduce internal oscillations based on inertia including variable friction functions. Further we replace inertia by delay effects and study motors in trigger regime. As possible applications we consider a model of ATP-driven motors operating on angle and elasticity variables. We develop a model of F1-ATPase motors with three β-subunits which drive the rotation of the central γ-shaft.


European Physical Journal Special Topic Load Force Molecular Motor Motor Model Internal Motor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.V. Kargovsky, Yu.M. Romanovsky, A.N. Tikhonov, Biophysics 54, 1 (2009)CrossRefGoogle Scholar
  2. 2.
    P. Hänggi, F. Marchesoni, Rev. Mod. Phys. 81, 387 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    P. Romanczuk, M. Bär, W. Ebeling, B. Lindner, L. Schimansky-Geier, Eur. Phys. J. Special Topics 202, 1 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    P. Romanczuk, W. Ebeling, U. Erdmann, L. Schimansky-Geier, Chaos 21, 047517 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    Yu.M. Romanovsky, A.N. Tikhonov, Phys.-Usp. 53, 893 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    P. Gaspard, E. Gerritsma, J. Theor. Biol. 247, 672 (2007)MathSciNetCrossRefGoogle Scholar
  7. 7.
    E. Gerritsma, P. Gaspard, Biophys. Rev. Lett. 5, 163 (2010)CrossRefGoogle Scholar
  8. 8.
    M. Esposito, U. Harbola, S. Mukamel, Rev. Mod. Phys. 81, 1665 (2009)MathSciNetADSCrossRefzbMATHGoogle Scholar
  9. 9.
    R. Yashida, H. Noji, K. Kinosita Jr., M. Yoshida, Cell 93, 1117 (1998)CrossRefGoogle Scholar
  10. 10.
    M. Nishiyama, H. Higuchi, T. Yanagida, Nat. Cell. Biol. 4, 11782 (2002)CrossRefGoogle Scholar
  11. 11.
    T. Harada, Europhys. Lett. 70, 49 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    F. Schweitzer, W. Ebeling, B. Tilch, Phys. Rev. Lett. 80, 5044 (1998)ADSCrossRefGoogle Scholar
  13. 13.
    U. Erdmann, W. Ebeling, L. Schimansky-Geier, F. Schweitzer, Eur. Phys. J. B 15, 105 (2000)ADSCrossRefGoogle Scholar
  14. 14.
    M. Kostur, L. Machura, P. Hänggi, J. Luczka, P. Talkner, Physica A 371, 20 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    D. Spetzler, J. York, D. Daniel, R. Fromme, D. Lowry, W. Frasch, Biochem. 45, 3117 (2006)CrossRefGoogle Scholar
  16. 16.
    W. Ebeling, I. Sokolov, Statistical Thermodynamics and Stochastic Theory of Nonequilibrium Systems (World Scientific, Singapore, 2005)Google Scholar
  17. 17.
    W. Ebeling, A.P. Chetverikov, M.G. Velarde, in Proc. Int. Conf. “Instabilities and Control of Excitable Networks: From Macro- to Nano-Systems”, Dolgoprudny (MAKS-Press, Moscow, 2012), p. 28Google Scholar
  18. 18.
    W. Ebeling, E. Gudowska-Nowak, A. Fiasconaro, Acta Phys. Pol. B 39, 1251 (2008)ADSGoogle Scholar
  19. 19.
    A. Fiasconaro, W. Ebeling, E. Gudowska-Nowak, Eur. Phys. J. B 65, 403 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    A. Fiasconaro, E. Gudowska-Nowak, W. Ebeling, Phys. Rev. E87, 032111 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    M. Zabicki, E. Gudowska-Nowak, W. Ebeling, Acta Phys. Pol. B 41, 1181 (2010)Google Scholar
  22. 22.
    M. Zabicki, W. Ebeling, E. Gudowska-Nowak, Chem. Phys. 375, 472 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    E. Zimmermann, U. Seifert, New J. Phys. 12, 1032023 (2012)Google Scholar
  24. 24.
    D. Andrieux, P. Gaspard, J. Stat. Phys. 127, 107 (2007)MathSciNetADSCrossRefzbMATHGoogle Scholar
  25. 25.
    D. Andrieux, P. Gaspard, J. Stat. Mech., P02006 (2007)Google Scholar
  26. 26.
    P. Hänggi, P. Talkner, M. Borkovec, Rev. Mod. Phys. 62, 251 (1990)ADSCrossRefGoogle Scholar
  27. 27.
    K.V. Kumar, S. Ramaswamy, M. Rao, Phys. Rev. E 77, 020102(R) (2008)ADSCrossRefGoogle Scholar
  28. 28.
    P.D. Boyer, Annu. Rev. Biochem. 66, 717 (1997)CrossRefGoogle Scholar
  29. 29.
    The mechanism of F1F0-ATPase, edited by J.E. Walker, Special Issue of Biochim. Biophys. Acta 1458 (2000)Google Scholar
  30. 30.
    R. Yasuda, H. Noji, M. Yoshida, K. Kinosita Jr., H. Itoh, Nature 410, 898 (2001)ADSCrossRefGoogle Scholar
  31. 31.
    H. Itoh, A. Takahashi, K. Adachi, H. Noji, R. Yasuda, M. Yoshida, K. Kinosita, Nature 427, 465 (2004)ADSCrossRefGoogle Scholar
  32. 32.
    J. Xing, J.-C. Liao, G. Oster, Proc. Natl. Acad. Sci. USA 102, 16539 (2005)ADSCrossRefGoogle Scholar
  33. 33.
    Y. Hirono-Hara, K. Ishizuka, K. Kinosita Jr., M. Yoshida, H. Noji, Proc. Natl. Acad. Sci. USA 102, 4288 (2005)ADSCrossRefGoogle Scholar
  34. 34.
    J.L. Eide, A.K. Chakraborty, G.F. Oster, Biophys. J. 90, 4281 (2006)ADSCrossRefGoogle Scholar
  35. 35.
    A. Pogrebnaya, Yu. Romanovsky, A. Tikhonov, Fluct. Noise Lett. 5, L217 (2005)CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  1. 1.Faculty of Physics, Lomonosov Moscow State UniversityMoscowRussia
  2. 2.Institute of Physics, Humboldt UniversityBerlinGermany

Personalised recommendations