The European Physical Journal Special Topics

, Volume 222, Issue 10, pp 2441–2451 | Cite as

Detection of coupling between oscillators with analytic tests for significance

  • Dmitry A. SmirnovEmail author
  • Elena V. Sidak
  • Boris P. Bezruchko
Regular Article Nonlinear Dynamics and Synchronization


To detect coupling between two oscillators from a time series, we suggest a method based on the estimation of the phase increments correlation with an analytic test for significance. With exemplary oscillators, we show that the suggested method complements a widely used approach based on the estimation of the mean phase coherence. In particular, the suggested method allows efficient detection of a non-synchronizing coupling and, due to a less restrictive null hypothesis, it is applicable to a wider range of situations, including arbitrarily strong phase nonlinearities.


European Physical Journal Special Topic Phase Noise Stochastic System Basic Period Phase Dynamic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.S. Pikovsky, M.G. Rosenblum, J. Kurths, Synchronization: A universal concept in nonlinear sciences (Cambridge University Press, Cambridge, 2001)Google Scholar
  2. 2.
    V.S. Anishchenko, V.V. Astakhov, A.B. Neiman, N.E. Vadivasova, L. Schimanski-Geier, Nonlinear dynamics of chaotic and stochastic systems (Springer-Verlag, Berlin, 2002)Google Scholar
  3. 3.
    E. Mosekilde, Yu. Maistrenko, D. Postnov, Chaotic synchronization: Applications to living systems (World Scientific, Singapore, 2002)Google Scholar
  4. 4.
    S. Boccaletti, J. Kurths, G. Osipov, D. Valladares, C. Zhou, Phys. Rep. 366, 1 (2002)MathSciNetADSCrossRefzbMATHGoogle Scholar
  5. 5.
    G.V. Osipov, J. Kurths, C. Zhou, Synchronization in oscillatory networks (Springer-Verlag, Berlin, 2007)Google Scholar
  6. 6.
    A. Balanov, N. Janson, D. Postnov, O. Sosnovtseva, Synchronization: From simple to complex (Springer-Verlag, Berlin, 2008)Google Scholar
  7. 7.
    F. Mormann, K. Lehnertz, P. David, C.E. Elger, Physica D 144, 358 (2000)ADSCrossRefzbMATHGoogle Scholar
  8. 8.
    M.G. Rosenblum, A.S. Pikovsky, J. Kurths, C. Schaefer, P.A. Tass, in Neuro-informatics, edited by F. Moss and S. Gielen, Handbook of Biological Physics 4 (Elsevier Science, New York, 2000), p. 279Google Scholar
  9. 9.
    A. Kraskov, T. Kreuz, R. Quian Quiroga, P. Grassberger, F. Mormann, K. Lehnertz, C.E. Elger, Epilepsia 43, 48 (2002)Google Scholar
  10. 10.
    M.D. Prokhorov, V.I. Ponomarenko, V.I. Gridnev, M.B. Bodrov, A.B. Bespyatov, Phys. Rev. E 68, 041913 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    A.Ye. Hramov, A.A. Koronovskii, Chaos 14, 603 (2004)MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    A.N. Pavlov, O.V. Sosnovtseva, O.N. Pavlova, E. Mosekilde, N.-H. Holstein-Rathlou, Physiol. Meas. 29, 945 (2008)CrossRefGoogle Scholar
  13. 13.
    A.S. Karavaev, M.D. Prokhorov, V.I. Ponomarenko, A.R. Kiselev, V.I. Gridnev, E.I. Ruban, B.P. Bezruchko, Chaos 19, 033112 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    D.A. Smirnov, U.B. Barnikol, T.T. Barnikol, B.P. Bezruchko, C. Hauptmann, C. Buehrle, M. Maarouf, V. Sturm, H.-J. Freund, P.A. Tass, Europhys. Lett. 83, 20003 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    I.I. Mokhov, D.A. Smirnov, Geophys. Res. Lett. 33, L03708 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    B.P. Bezruchko, D.A. Smirnov, Extracting knowledge from time series: An introduction to nonlinear empirical modeling (Springer-Verlag, Berlin, 2010)Google Scholar
  17. 17.
    C. Allefeld, J. Kurths, Int. J. Bif. Chaos 14, 405 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    B. Schelter, M. Winterhalder, J. Timmer, M. Peifer, Phys. Lett. A 366, 382 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    J. Brea, D.F. Russell, A.B. Neiman, Chaos 16, 026111 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    D.A. Smirnov, E.V. Sidak, B.P. Bezruchko, Sov. Tech. Phys. Lett. 39, 40 (2013)Google Scholar
  21. 21.
    P.A. Tass, Phase resetting in medicine and biology. Stochastic modelling and data analysis (Springer-Verlag, Berlin, 1999)Google Scholar
  22. 22.
    A.S. Pikovsky, M.G. Rosenblum, J. Kurths, Int. J. Bifurc. Chaos 10, 2291 (2000)MathSciNetzbMATHGoogle Scholar
  23. 23.
    A.A. Borovkov, Mathematical statistics (Fizmatlit, Moscow, 2007)Google Scholar
  24. 24.
    G.E.P. Box, G.M. Jenkins, Time series analysis. Forecasting and control (Holden-Day, San Francisco, 1970)Google Scholar
  25. 25.
    B. Kralemann, L. Cimponeriu, M. Rosenblum, A. Pikovsky, R. Mrowka, Phys. Rev. E 77, 066205 (2008)MathSciNetADSCrossRefGoogle Scholar
  26. 26.
    V.S. Anishenko, T.Ye. Vadivasova, G.A. Okrokvertskhov, G.I. Strelkova, Physics – Uspekhi 175, 163 (2005)CrossRefGoogle Scholar
  27. 27.
    V.V. Matrosov, V.D. Shalfeev, Dynamical chaos in phase systems. A tutorial (Nizhny Novgorod State University, Nizhny Novgorod, 2007)Google Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  • Dmitry A. Smirnov
    • 1
    • 2
    Email author
  • Elena V. Sidak
    • 2
  • Boris P. Bezruchko
    • 2
    • 1
  1. 1.Saratov Branch of V.A. Kotel’nikov Institute of RadioEngineering and Electronics of the Russian Academy of SciencesSaratovRussia
  2. 2.Saratov State UniversitySaratovRussia

Personalised recommendations