Advertisement

The European Physical Journal Special Topics

, Volume 222, Issue 10, pp 2407–2416 | Cite as

From complete to modulated synchrony in networks of identical Hindmarsh-Rose neurons

  • Sebastian Ehrich
  • Arkady Pikovsky
  • Michael RosenblumEmail author
Regular Article Nonlinear Dynamics and Synchronization

Abstract

In most cases tendency to synchrony in networks of oscillatory units increases with the coupling strength. Using the popular Hindmarsh-Rose neuronal model, we demonstrate that even for identical neurons and simple coupling the dynamics can be more complicated. Our numerical analysis for globally coupled systems and oscillator lattices reveals a new scenario of synchrony breaking with the increase of coupling, resulting in a quasiperiodic, modulated synchronous state.

Keywords

Coupling Strength European Physical Journal Special Topic Floquet Multiplier Synchronous State Complex Multiplier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Y. Kuramoto, Chemical Oscillations, Waves and Turbulence (Springer, Berlin, 1984)Google Scholar
  2. 2.
    A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization. A Universal Concept in Nonlinear Sciences (Cambridge University Press, Cambridge, 2001)Google Scholar
  3. 3.
    V. Anishchenko, A. Neiman, V. Astakhov, T. Vadiavasova, L. Schimansky-Geier, Chaotic and Stochastic Processes in Dynamic Systems (Springer Verlag, Berlin, 2002)Google Scholar
  4. 4.
    S.H. Strogatz, Sync: The Emerging Science of Spontaneous Order (Hyperion, NY, 2003)Google Scholar
  5. 5.
    S.C. Manrubia, A.S. Mikhailov, D.H. Zanette, Emergence of Dynamical Order: Synchronization Phenomena in Complex Systems, Vol. 2, Lecture Notes in Complex Systems (World Scientific, Singapore, 2004)Google Scholar
  6. 6.
    V. Anishchenko, V. Astakhov, A. Neiman, T. Vadivasova, L. Schimansky-Geier, Nonlinear Dynamics of Chaotic and Stochastic Systems. Tutorial and Modern Development, 2nd edition (Springer, Berlin, Heidelberg, 2007)Google Scholar
  7. 7.
    D. Golomb, D. Hansel, G. Mato, in Neuro-informatics and Neural Modeling, edited by F. Moss, S. Gielen, Vol. 4, Handbook of Biological Physics (Elsevier, Amsterdam, 2001), p. 887Google Scholar
  8. 8.
    M. Breakspear, S. Heitmann, A. Daffertshofer, Front. Human Neurosci. 4, 190 (2010)Google Scholar
  9. 9.
    E.M. Izhikevich, Dynamical Systems in Neuroscience (MIT Press, Cambridge, Mass., 2007)Google Scholar
  10. 10.
    L. Pecora, T. Carroll, Phys. Rev. Lett. 80, 2109 (1997)ADSCrossRefGoogle Scholar
  11. 11.
    M. Rosenblum, A. Pikovsky, Phys. Rev. Lett. 98, 064101 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    A. Pikovsky, M. Rosenblum, Physica D 238, 27 (2009)MathSciNetADSCrossRefzbMATHGoogle Scholar
  13. 13.
    H. Sakaguchi, Y. Kuramoto, Prog. Theor. Phys. 76, 576 (1986)MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    J.L. Hindmarsh, R.M. Rose, Proc. Roy. Soc. London Ser. B 221, 87 (1984)ADSCrossRefGoogle Scholar
  15. 15.
    K. Kaneko, Physica D 77, 456 (1994)ADSCrossRefzbMATHGoogle Scholar
  16. 16.
    A. Pikovsky, O. Popovych, Y. Maistrenko, Phys. Rev. Lett. 87, 044102 (2001)ADSCrossRefGoogle Scholar
  17. 17.
    B. Ermentrout, Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students (SIAM, Philadelphia, 2002)Google Scholar
  18. 18.
    I. Aranson, L. Kramer, Rev. Mod. Phys. 74, 99 (2002)MathSciNetADSCrossRefzbMATHGoogle Scholar
  19. 19.
    A.A. Temirbayev, Z.Z. Zhanabaev, S.B. Tarasov, V.I. Ponomarenko, M. Rosenblum, Phys. Rev. E 85, 015204(R) (2012)ADSCrossRefGoogle Scholar
  20. 20.
    S.K. Han, C. Kurrer, Y. Kuramoto, Phys. Rev. Lett. 75, 3190 (1995)ADSCrossRefGoogle Scholar
  21. 21.
    C. van Vreeswijk, Phys. Rev. E 54, 5522 (1996)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  • Sebastian Ehrich
    • 1
  • Arkady Pikovsky
    • 1
  • Michael Rosenblum
    • 1
    Email author
  1. 1.Institute of Physics and Astronomy, University of PotsdamPotsdam-GolmGermany

Personalised recommendations