Advertisement

The European Physical Journal Special Topics

, Volume 222, Issue 10, pp 2399–2405 | Cite as

Neuron-like dynamics of a phase-locked loop

  • Valery V. Matrosov
  • Mikhail A. MishchenkoEmail author
  • Vladimir D. Shalfeev
Regular Article Nonlinear Dynamics and Synchronization

Abstract

Dynamics of two coupled phase-controlled generators based on phase-locked loop systems with a high frequency filter in the control loop was studied. It was found that beating modes are synchronized in the systems and shown that different synchronization states form an overlapping structure in parameters space of the coupled systems. Usage of the phase-locked loop as a neuron-like element is proposed.

Keywords

European Physical Journal Special Topic Chaotic Attractor Period Doubling Bifurcation Fundamental Tone Synchronization Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W.C. Lindsey, M.K. Simon, Phase-locked loops & their application (IEEE Press, 1978)Google Scholar
  2. 2.
    G. Chen, T. Ueta, Chaos in circuits and systems (World Scientific Publishing Company, Singapore, 2002)Google Scholar
  3. 3.
    V.V. Matrosov, V.D. Shalfeev, Dynamic chaos in phase systems (The UNN Press, N.Novgorod, Russia, 2009) [in Russian]Google Scholar
  4. 4.
    T. Endo, L.O. Chua, IEEE Trans. Circ. Syst. 35, 987 (1988)MathSciNetCrossRefGoogle Scholar
  5. 5.
    T. Endo, L.O. Chua, IEEE Trans. Circ. Syst. 38, 1580 (1991)CrossRefGoogle Scholar
  6. 6.
    M.A. Mishchenko, Vestnik of Lobachevsky State University of Nizhni Novgorod 5, 279 (2011) [in Russian]Google Scholar
  7. 7.
    V.D. Shalfeev, Radiophys. Quant. Electr. 11, 221 (1968)ADSCrossRefGoogle Scholar
  8. 8.
    M.A. Mishchenko, V.D. Shalfeev, V.V. Matrosov, Izvestiya VUZov. Prikladnaya Nelineynaya Dinamika 20, 122 (2012) [in Russian]zbMATHGoogle Scholar
  9. 9.
    V.V. Matrosov, “Dynamics of nonlinear systems”. Software package for investigation of nonlinear dynamic systems with continuous time: teaching manual (The UNN Press, N.Novgorod, Russia, 2002) [in Russian]Google Scholar
  10. 10.
    M. Rabinovich, P. Varona, A. Selverstone, H. Abarbanel, Rev. Modern Phys. 78, 1213 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    E.M. Izhikevich, Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting (The MIT Press, Cambridge, Massachusetts, 2007)Google Scholar
  12. 12.
    M.A. Mishchenko, V.V. Matrosov, V.D. Shalfeev, Proceedings of XVII Scientific Conferense on Radiophysics (submitted) [in Russian]Google Scholar
  13. 13.
    R.M. Borisyuk, Y.B. Kazanovich, Neural Networks 17, 899 (2004)CrossRefzbMATHGoogle Scholar
  14. 14.
    L.O. Chua, L. Yang, IEEE Trans. Circ. Syst. 35, 1257 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    L.O. Chua, L. Yang, IEEE Trans. Circ. Syst. 35, 1273 (1988)MathSciNetCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  • Valery V. Matrosov
    • 1
  • Mikhail A. Mishchenko
    • 1
    Email author
  • Vladimir D. Shalfeev
    • 1
  1. 1.Lobachevsky State University of Nizhni NovgorodNizhni NovgorodRussian Federation

Personalised recommendations