The European Physical Journal Special Topics

, Volume 222, Issue 9, pp 2279–2284 | Cite as

Experimental determination of core relaxation and screening effects on the wavefunction at a nucleus for stable isotopes of — 151,153Eu II

  • B. FurmannEmail author
  • D. Stefańska
Regular Article


In this work results of the measurements of the isotope shifts and the hyperfine structure of 3 levels of singly ionized europium, which were hitherto not investigated (or investigated with lower precision), are presented. In the measurements laser induced fluorescence method in a hollow cathode lamp was applied for 9 spectral lines of europium ion. The perspective aim of the investigations was the search for the sources of discrepancy between the value of the wave function modulus at the nucleus resulting from ab initio calculations and the value obtained in parametrization of isotope shifts, in particular for configuration 4f65d6s and 4f65d2. This discrepancy may result both from an incorrect classification of the levels and from a larger value of specific mass shift than the one resulting from calculations, or from the effects of core relaxation and screening. On the basis of the results obtained in this work and those available in the literature parametrization of isotope shifts for odd configurations of Eu II was performed, wherein angular coefficients calculated with semi-empirical method were applied. Further the parameters obtained were compared to the results of ab initio calculations, both available in the literature, and performed by the authors with the use of a nonrelativistic code (MCHF-Froese Fischer) and a relativistic code (MCDF-Desclaux). Results of the work, after completion of the measurements for even levels of Eu II, constitute the basis for parametrization of isotope shifts for even configurations and determination of the sources of discrepancies discussed.


Spectral Line EUROPEAN Physical Journal Special Topic Isotope Shift Physical Journal Special Topic Table Specific Mass Shift 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Wilson, J. Phys. B; At. Mol. Phys. 5, 218 (1972)ADSCrossRefGoogle Scholar
  2. 2.
    M.A. Coulthard, J. Phys. B; At. Mol. Phys. 6, 23 (1973)ADSCrossRefGoogle Scholar
  3. 3.
    M.A. Coulthard, J. Phys. B; At. Mol. Phys. 6, 2224 (1973)ADSCrossRefGoogle Scholar
  4. 4.
    K. Heilig, A. Steudel, At. Data Nucl. Data Tables 14, 613 (1974)ADSCrossRefGoogle Scholar
  5. 5.
    H.D. Kronfeldt, J.R. Kropp, R. Winkler, J. Opt. Soc. Am. B 1, 293 (1984)ADSCrossRefGoogle Scholar
  6. 6.
    B. Furmann, D. Stefańska, J. Phys. B: At. Mol. Opt. Phys. 44, 225005 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    A. Sen, W.J. Childs, J. Bauche, J.F. Wyart, Phys. Rev. A 42, 2573 (1990)ADSCrossRefGoogle Scholar
  8. 8.
    J.E. Lawler, M.E. Wickliffe, E.A. Den Hartog, C. Sneden, Astrophys J. 563, 1075 (2001)ADSCrossRefGoogle Scholar
  9. 9.
    H.N. Russel, W. Albertson, D.N. Davis, Phys. Rev. 60, 641 (1941)ADSCrossRefGoogle Scholar
  10. 10.
    I. Koniordos, R. Winkler, Phys. Lett. A 27, 198 (1968)ADSCrossRefGoogle Scholar
  11. 11.
    P. Heinecke, Diplomarbeit (Hannover, 1966)Google Scholar
  12. 12.
    H. Esrom, Diplomarbeit (Hannover, 1985)Google Scholar
  13. 13.
    B. Furmann, D. Stefańska, J. Dembczyński, J. Phys. B: At. Mol. Opt. Phys. 42, 175005 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    B. Furmann, A. Krzykowski, D. Stefańska, J. Dembczynski, Physica. Scripta 74, 658 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    B. Furmann, D. Stefańska, J. Dembczyński, Physica Scripta 76, 264 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    B. Furmann, D. Stefańska, J. Dembczyński, E. Stachowska, Atomic Data Nucl. Data Tables 93, 127 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    B. Furmann, J. Ruczkowski, D. Stefańska, M. Elantkowska, J. Dembczyński, J. Phys. B: At. Mol. Opt. Phys. 21, 215004 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    B. Furmann, M. Elantkowska, D. Stefańska, J. Ruczkowski, J. Dembczyński, J. Phys. B: At. Mol. Opt. Phys. 23, 235002 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    G. Guthoehrlein, Z. Phys. 214, 332 (1968)ADSCrossRefGoogle Scholar
  20. 20.
    J.P. Desclaux, Comput. Phys. Commun. 9, 31 (1975)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  1. 1.Laboratory of Quantum Engineering and MetrologyPoznań University of TechnologyPoznańPoland

Personalised recommendations