The European Physical Journal Special Topics

, Volume 222, Issue 9, pp 2257–2266 | Cite as

Theoretical study of the photoelectron spectrum of ethyl formate: Ab initio and density functional theory investigation

  • M. ŁabudaEmail author
  • J. GuthmullerEmail author
Regular Article


The first ionization energy and associated photoelectron spectrum of ethyl formate are investigated with quantum chemistry calculations. The geometries, harmonic vibrational frequencies and first ionization energy are computed at the Hartree-Fock (HF) and at the second order Møller-Plesset perturbation theory (MP2). Moreover, accurate ionization energies are obtained with the Coupled-Cluster theory including singles and doubles excitations (CCSD) as well as singles, doubles and perturbative triples excitations (CCSD(T)). Then, these ab initio results are assessed with respect to experimental values. Additionally, the ionization energies are also calculated with the computationally attractive density functional theory (DFT). In this case the accuracy of several exchange-correlation functionals is evaluated by comparison with the ab initio and experimental results. In a next step, the vibrational structure of the photoelectron spectrum is simulated at the HF, MP2 and DFT levels via the calculation of the Franck-Condon factors. These simulations are compared to the experimental photoelectron spectrum and allow an accurate reproduction of the vibrational progression.


Density Functional Theory European Physical Journal Special Topic Photoelectron Spectrum Vibrational Structure Harmonic Vibrational Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. Nunes, G. Martins, N.J. Mason, D. Duflot, S.V. Hoffmann, J. Delwiche, M.-J. Hubin-Franskin, P. Limão-Vieira, Phys. Chem. Chem. Phys. 12, 15734 (2010)CrossRefGoogle Scholar
  2. 2.
    M.A. Śmiałek, M.-J. Hubin-Franskin, J. Delwiche, D. Duflot, N.J. Mason, S. Vrønning-Hoffmann, G.G.B. de Souza, A.M.F. Rodrigues, F.N. Rodrigues, P. Limão-Vieira, Phys. Chem. Chem. Phys. 14, 2056 (2012)CrossRefGoogle Scholar
  3. 3.
    K. Khistyaev, K.B. Bravaya, E. Kamarchik, O. Kostko, M. Ahmed, A.I. Krylov, Faraday Discuss. 150, 313 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    K.B. Bravaya, O. Kostko, S. Dolgikh, A. Landau, M. Ahmed, A.I. Krylov, J. Phys. Chem. A. 114, 12305 (2010)CrossRefGoogle Scholar
  5. 5.
    M.P.S. Mateus, B.J.C. Cabral, Chem. Phys. Lett. 448, 280 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    J.M. Riveros, E.B. Wilson, J. Chem. Phys. 46, 4605 (1967)ADSCrossRefGoogle Scholar
  7. 7.
    Z. Peng, S. Shlykov, C. Van Alsenoy, H.J. Geise, B. Van der Veken, J. Phys. Chem. 99, 10201 (1995)CrossRefGoogle Scholar
  8. 8.
    M.A. Śmiałek, M.-J . Hubin-Franskin, J. Delwiche, M. Łabuda, J. Guthmuller, D. Duflot, N.J. Mason, S. Vrønning-Hoffmann, N.C. Jones, P. Limão-Vieira (in preparation)Google Scholar
  9. 9.
    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, et al., Gaussian 09, Inc., Wallingford CT (2009)Google Scholar
  10. 10.
    A.D. Becke, J. Chem. Phys. 98, 5648 (1993)ADSCrossRefGoogle Scholar
  11. 11.
    C. Lee, W. Yang, R.G. Parr, Phys. Rev. B. 37, 785 (1988)ADSCrossRefGoogle Scholar
  12. 12.
    J.-D. Chai, M. Head-Gordon, J. Chem. Phys. 128, 084106 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    A.D. Becke, Phys. Rev. A. 38, 3098 (1988)ADSCrossRefGoogle Scholar
  14. 14.
    H. Iikura, T. Tsuneda, T. Yanai, K. Hirao, J. Chem. Phys. 115, 3540 (2001)ADSCrossRefGoogle Scholar
  15. 15.
    T. Schwabe, S. Grimme, Phys. Chem. Chem. Phys. 9, 3397 (2007)CrossRefGoogle Scholar
  16. 16.
    T.H. Dunning, J. Chem. Phys. 90, 1007 (1989)ADSCrossRefGoogle Scholar
  17. 17.
    F. Duschinsky: Acta Physicochim. URSS. 7, 551 (1937)Google Scholar
  18. 18.
    T.E. Sharp, H.M. Rosenstock, J. Chem. Phys. 41, 3453 (1964)ADSCrossRefGoogle Scholar
  19. 19.
    P.T. Ruhoff, Chem. Phys. 186, 355 (1994)ADSCrossRefGoogle Scholar
  20. 20.
    J. Guthmuller, F. Zutterman, B. Champagne, J. Chem. Theory Comput. 4, 2094 (2008)CrossRefGoogle Scholar
  21. 21.
    J. Guthmuller, F. Zutterman, B. Champagne, J. Chem. Phys. 131, 154302 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    J. Guthmuller, B. Champagne, Chem. Phys. Chem. 9, 1667 (2008)CrossRefGoogle Scholar
  23. 23.
    J. Guthmuller, B. Champagne, C. Moucheron, A. Kirsch - De Mesmaeker, J. Phys. Chem. B. 114, 511 (2010)CrossRefGoogle Scholar
  24. 24.
    J.P. Merrick, D. Moran, L. Radom, J. Phys. Chem. A. 111, 11683 (2007)CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  1. 1.Department of Theoretical Physics and Quantum Information, Faculty of Applied Physics and MathematicsGdańsk University of TechnologyGdańskPoland

Personalised recommendations