The European Physical Journal Special Topics

, Volume 222, Issue 9, pp 2233–2239 | Cite as

Pulse propagation in an autoionization medium with double Fano profile

  • T. Bui Dinh
  • K. Doan Quoc
  • V. Cao LongEmail author
  • K. Dinh Xuan
Regular Article


We discuss the propagation of a short laser pulse in an auto- ionizing (AI) medium with degenerate double Fano model. By solving numerically the coupled equations for atoms and fields we show that by the proper choice of Fano parameters involved in the problem (contrary to the case considered in (E. Paspalakis, N. J. Kylstra, and P. L. Knight, Phys. Rev. A60 (1999)) we have now two Fano asymmetry parameters) one can eliminate almost completely the absorption in the pulse propagation. It means that we have the transparency in the medium. From the connection between population trapping in short pulsed laser field and transparency in the propagation of the laser pulse which has been fixed by Paspalakis et al., Phys. Rev. A60 (1999) we conclude that this proper choice leads to the presence of the population trapping (or the existence of the “dark” states) in the atomic system. Moreover, instead of one value of the laser detuning for which the dark states exist in the case of one AI level, we find numerically two such values in the case of two AI levels.


Pulse Propagation European Physical Journal Special Topic Atomic System Proper Choice Electromagnetically Induce Transparency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V.C. Long, Rev. Adv. Mater. Sci. 23, 8 (2010)Google Scholar
  2. 2.
    P.R. Berman, C.H. Raymond Ooi, Phys. Rev. A 86, 053812 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    C.L. Van, Structured continuum in various optical phenomena, in Physics and applications I: Quantum Optics”, edited by Wiesław Leoński (University of Zielona Góra Press, 2012), p. 195Google Scholar
  4. 4.
    A. Eilam, M. Shapiro, Phys. Rev. A 85, 012520 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    K. Kowalski, V. Cao Long, H. Nguyen Viet, S. Gateva, M. Głódź, J. Szonert, J. Non-Cryst. Solids 355, 1295 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    K. Kowalski, V. Cao Long, K. Dinh Xuan, M. Głódź, B. Nguyen Huy, J. Szonert, Comput. Meth. Sci. Technol., Spec. Iss. (2), 131 (2010)Google Scholar
  7. 7.
    E. Paspalakis, P.L. Knight, Phys. Rev. A 66, 015082 (2002)Google Scholar
  8. 8.
    A. Raczyński, M. Rzepecka, J. Zaremba, S. Zielińska-Kaniasty, Opt. Commun. 266, 552 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    T. Bui Dinh, W. Leoński, V. Cao Long, J. Perina Jr., Optica Applicata 43 (2013) (in press)Google Scholar
  10. 10.
    E. Paspalakis, N.J. Kylstra, P.L. Knight, Phys. Rev. A 60, 642 (1999)ADSCrossRefGoogle Scholar
  11. 11.
    W. Leoński, R. Tanaś, S. Kielich, J. Opt. Am. B 4, 72 (1987)ADSCrossRefGoogle Scholar
  12. 12.
    W. Leoński, R. Tanaś, J. Phys. B 21, 2835 (1988)ADSCrossRefGoogle Scholar
  13. 13.
    W. Leoński, V. Buzek, J. Mod. Opt. 37, 1923 (1990)ADSCrossRefGoogle Scholar
  14. 14.
    T. Bui Dinh, W. Leoński, V. Cao Long, K. Dinh Xuan (to be published)Google Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  • T. Bui Dinh
    • 1
    • 2
  • K. Doan Quoc
    • 1
    • 3
  • V. Cao Long
    • 1
    Email author
  • K. Dinh Xuan
    • 2
  1. 1.Quantum Optics and Engineering Division, Institute of PhysicsZielona Góra UniversityZielona GóraPoland
  2. 2.Vinh UniversityVinh CityVietnam
  3. 3.Quang Tri Teacher Training College, Km3Dong Ha, Quang TriVietnam

Personalised recommendations