Advertisement

The European Physical Journal Special Topics

, Volume 222, Issue 9, pp 2223–2232 | Cite as

Spatial characterization of H 2 :CH 4 dissociation level in microwave ECR plasma source by fibre-optic OES

  • R. BogdanowiczEmail author
  • Lukasz Golunski
  • Michal Sobaszek
Regular Article

Abstract

Spatially resolved optical emission spectroscopy (SR-OES) was used to investigate microwave activated H2/Ar/CH4 plasma under conditions of the electron cyclotron resonance (ECR). The chemistry and composition of the gas phase were studied using self-designed fibre-optic system with echelle type spectrometer during CVD deposition of polycrystalline diamond. One-dimensional intensity profiles of the main species were collected along the vertical axis of chamber. The dominant species in the flux, originating from excited hydrogen and hydrocarbons, were identified as H, H+, CH and CH+; they are crucial for the diamond deposition process. The effect of ECR on the spatial distribution of H2 and CH4 dissociation profiles was studied in depth. The influence of processing parameters (gas flow rates, input power, pressure and magnetic field level) on species excitation as a function of the distance above substrate was asessed. The obtained data can be used for the ECR system optimization.

Keywords

European Physical Journal Special Topic Microwave Power Optical Emission Spectroscopy Electron Cyclotron Resonance Diamond Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Adamschik, J. Kusterer, P. Schmidt, K.B. Schad, D. Grobe, A. Floter, E. Kohn, Diamond Relat. Mater. 11, 672 (2002)ADSCrossRefGoogle Scholar
  2. 2.
    J. Szmidt, Technologie diamentowe – diament w elektronice (Oficyna Wydawnicza PW, Warszawa, 2005)Google Scholar
  3. 3.
    P.W. May, Science 319, 1490 (2009)CrossRefGoogle Scholar
  4. 4.
    J. Asmussen, D. Reinhard, D.S. Dandy, Diamond Thin Films Handbook (Marcel Dekker, Inc., New York, 2002)Google Scholar
  5. 5.
    J. Robertson, Mater. Sci. Eng. R-Reports 37, 129 (2002)CrossRefGoogle Scholar
  6. 6.
    G. Lombardi, K. Hassouni, G.-D. Stancu, L. Mechold, J. Ropcke, A. Gicquel, J. Appl. Physl. 98, 053303 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    S.J. Harris, A.M. Weiner, T.A. Perry, Appl. Phys. Lett. 53, 1605 (1988)ADSCrossRefGoogle Scholar
  8. 8.
    T. Lang, J. Stiegler, Y.V. Kaenel, E. Blank, Diamond Relat. Mater 5, 1171 (1996)ADSCrossRefGoogle Scholar
  9. 9.
    H.C. Barshilia, J. Appl. Phys. 7, 3694 (1996)ADSCrossRefGoogle Scholar
  10. 10.
    R. Bogdanowicz, M. Gnyba, P. Wroczynski, J. Phys. IV (France) 137, 57 (2006)CrossRefGoogle Scholar
  11. 11.
    M. Gnyba, R. Bogdanowicz, Eur. Phys. J. Special Topics 144, 209 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    A. Herman, P. Wroczynski, Adv. Sci. Technol. 6, 141 (1994)Google Scholar
  13. 13.
    A. Herman, Int. J. Nanotechnol. 3, 215 (2005)CrossRefGoogle Scholar
  14. 14.
    N. Jones, W. Ahmed, I.U. Hassan, J. Phys.: Condens. Matter 15, 2969 (2003)ADSCrossRefGoogle Scholar
  15. 15.
    C. J. Spanos, K. Poolla, Final EECS Report Berkley No. 96-022 (1996)Google Scholar
  16. 16.
    S. Rangan, C.J. Spanos, K. Polla, Proc. IEEE Int. Symp. on Semiconductor Manufacturing Conference, San Francisco (1997) D9(B41)Google Scholar
  17. 17.
    A. Chingsungnoen, J.I.B. Wilson, V. Amornkitbamrung, C. Thomas, T. Burinprakhon, Plasma Sources Sci. Technol. 16, 434 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    A.N. Obraztsov, A.A. Zolotukhin, A.O. Ustinov, Carbon 41, 836 (2003)CrossRefGoogle Scholar
  19. 19.
    M.A. Elliott, P.W. May, J. Petherbridge, S.M. Leeds, M.N.R. Ashfold, Diam. Rel. Mat 9, 311 (2000)CrossRefGoogle Scholar
  20. 20.
    Z. Zu-Yuan, C. Guang-Chao, T. Wei-Zhong, Chin Phys. 15, 980 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    L. Tomasini, A. Rousseau, G. Gousset, P. Leprince, Appl. Phys. 29, 1006 (1996)Google Scholar
  22. 22.
    R. Bogdanowicz, Optoelectronic monitoring of low-temperature plasma excitation used for Diamond-Like Carbon layer synthesis, Ph.D. thesis, Gdansk University of Technology, Gdansk, 2004Google Scholar
  23. 23.
    I. Sobelman, Atomic spectra and radiative transitions (Springer-Verlag, Berlin, 1992)Google Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  • R. Bogdanowicz
    • 1
    Email author
  • Lukasz Golunski
    • 1
  • Michal Sobaszek
    • 1
  1. 1.Department of Metrology and Optoelectronics, Faculty of Electronics, Telecommunications and InformaticsGdansk University of TechnologyGdanskPoland

Personalised recommendations