Advertisement

The European Physical Journal Special Topics

, Volume 222, Issue 9, pp 2217–2221 | Cite as

Protonated water clusters

Hartree-Fock study of dissociation energies
  • T. WróblewskiEmail author
  • G. P. Karwasz
Regular Article
  • 134 Downloads

Abstract

A complete set of protonated water clusters conformers up to n = 8 have been evaluated by ab-initio Hartree-Fock method in 6-311G** molecular orbitals basis set and with quadratic complete basis set method. Configurations of ground-state conformers are in a good accord with those available in literature but present dissociation energies for the light clusters agree better with experimental values. A tentative analysis of experimental conditions for observation of certain clusters is presented in comparison to selected formation paths of clusters. Dissociation energies show a broad range of values.

Keywords

European Physical Journal Special Topic Dissociation Energy Formation Enthalpy Neutral Cluster Total Electronic Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Kim, D. Majumdar, H.M. Lee, K.S. Kim, J. Chem. Phys. 110, 9128 (1999)ADSCrossRefGoogle Scholar
  2. 2.
    M.P. Hodges, D.J. Wales, Chem. Phys. Lett. 324, 279 (2000)ADSCrossRefGoogle Scholar
  3. 3.
    J. Sadlej, J. Chem. Phys. Lett. 333, 485 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    M.J. Gillan, F.R. Manby, M.D. Towler, D. Alfe, J. Chem. Phys. 136, 244105 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    T. Wróblewski, L. Ziemczonek, E. Gazda, G.P. Karwasz, Rad. Phys. Chem. 68, 313 (2003)ADSCrossRefGoogle Scholar
  6. 6.
    A. Likholyot, K.H. Lemke, J.K. Hovey, T.M. Seward, Geochim. Cosmochim. Acta 71, 2436 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    T. Wróblewski, L. Ziemczonek, E. Gazda, G.P. Karwasz, Proc. SPIE 5258, 214 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    K. Honma, L.S. Sunderlin, P.D. Armentrount, Int. J. Mass Spectrom. 117, 237 (1992)ADSCrossRefGoogle Scholar
  9. 9.
    T.F. Magnera, D.E. David, J. Michl, Chem. Phys. Lett. 182, 363 (1991)ADSCrossRefGoogle Scholar
  10. 10.
    S. Zamith, P. Labastie, J.-M. L’Hermite, J. Chem. Phys. 136, 214301 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    T. Wróblewski, E. Gazda, G. Karwasz, J. Mechliśka-Drewko, Int. J. Mass Spectr. 207, 97 (2001)CrossRefGoogle Scholar
  12. 12.
    J.-Ch. Jiang, Y.-S. Wang, H.-Ch. Chang, S.H. Lin, Y.Y. Lee, G. Niedner-Schatteburg, H.-Ch. Chang, J. Am. Chem. Soc. 122, 1398 (2000)CrossRefGoogle Scholar
  13. 13.
    M. Eigen, L. de Maeyer Proc. Royal Soc. London A247, 505 (1958)ADSCrossRefGoogle Scholar
  14. 14.
    A.J. Cunningham, J.D. Payzant, P. Kebarle, J. Am. Chem. Soc. 1, 7627 (1972)CrossRefGoogle Scholar
  15. 15.
    P. Kebarle, S.K. Searles, A. Zolla, J. Scaeborough, M. Arshadi, J. Am. Chem. Soc. 89, 6393 (1967)CrossRefGoogle Scholar
  16. 16.
    G. Hauck, F. Arnold, Nature 311, 547 (1984)ADSCrossRefGoogle Scholar
  17. 17.
    H.M. Lee, S.B. Suh, J.Y. Lee, P. Tarakeshwar, K.S. Kim, J. Chem. Phys. 112, 9759 (2000)ADSCrossRefGoogle Scholar
  18. 18.
    K.N. Marsh (ed.), Recommended Reference Materials for the Realization of Physicochemical Properties (Blackwell, Oxford, 1987)Google Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  1. 1.Institute of PhysicsPomeranian UniversitySłupskPoland
  2. 2.Institute of PhysicsUniversity Nicolaus CopernicusToruńPoland

Personalised recommendations