The European Physical Journal Special Topics

, Volume 222, Issue 9, pp 2187–2195 | Cite as

Pulsed supersonic source of vdW complexes for high-temperature applications: Spectroscopy and beam characteristics

  • T. UrbanczykEmail author
  • J. Koperski
Regular Article


Application of a modified version of high-temperature high-pressure all-metal pulsed source of supersonic molecular beam is demonstrated in a production of van der Waals (vdW) complexes. The vdW complexes are produced possessing controllable rotational temperature (T rot ) in the range from 3 K to 19 K. An effective control over T rot is illustrated employing excitation spectrum recorded using the B 31(53 P 1) ← X 10+(51 S 0) transition in CdAr. First-time resolved rotational structure in the profile of the υ′ = 2←υ′′ = 0 vibrational component is reported. The control over T rot is crucial in a dissociation of the (111Cd)2 isotopologue in the supersonic beam. For the process, excitation at well defined J′← J′′ rotational transition within the (υ′,υ′′) = (40,0) vibrational band of the A 10 u +(51 P 1) ← X 10 g +(51 S 0) transition is employed. It is followed by the dissociation using A 10 u +(υ′ = 40,J′′) → X 10 g + bound → free transition. An analysis and simulation of the (40,0) vibrational band rotational structure are presented. Parameters describing conditions in the supersonic beam, degree of rotational cooling, Doppler broadening and spectral bandwidth of the laser beam are used.


Excitation Spectrum European Physical Journal Special Topic Vibrational Band Solenoid Valve Rotational Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Koperski, Laser Spectroscopy of Neutral-Neutral Interactions (Wiley-VCH, Weinheim, 2003)Google Scholar
  2. 2.
    J. Koperski, J.B. Atkinson, L. Krause, J. Mol. Spectrosc. 187, 181 (1998)ADSCrossRefGoogle Scholar
  3. 3.
    J. Koperski, X. Qu, H. Meng, R. Kenefick, E.S. Fry, Chem. Phys. 348, 103 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    T. Urbanczyk, J. Koperski, Rev. Sci. Instrum. 83, 083114 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    M. Strojecki, M. Krosnicki, M. Lukomski, J. Koperski, Chem. Phys. Lett. 471, 29 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    J. Koperski, Sz. M. Kielbasa, M. Czajkowski, Spectrochim. Acta A 56, 1613 (2000)ADSCrossRefGoogle Scholar
  7. 7.
    G. Herzberg, Molecular Spectra and Molecular Structure. I. Spectra of Diatomic Molecules (D. Van Nostrand, 1950)Google Scholar
  8. 8.
    PGOPHER, a Program for Simulating Rotational Structure C. M. Western, University of Bristol,
  9. 9.
    D.M. Lubman, C.T. Rettner, R.N. Zare, J. Phys. Chem. 86, 1129 (1982)CrossRefGoogle Scholar
  10. 10.
    J. Koperski, E.S. Fry, J. Phys. B: At. Mol. Opt. Phys. 39, 1125 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    A. Einstein, B. Podolsky, N. Rosen, Phys. Rev. 47, 777 (1935)ADSCrossRefzbMATHGoogle Scholar
  12. 12.
    T. Urbanczyk, M. Strojecki, M. Krosnicki, J. Koperski, Opt. Appl. 42, 433 (2011)Google Scholar
  13. 13.
    E.S. Fry, Th. Walther, S. Li, Phys. Rev. A 52, 4381 (1995)MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    M. Lukomski, J. Koperski, E. Czuchaj, M. Czajkowski, Phys. Rev. A 68, 042508 (2003)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  1. 1.Smoluchowski Institute of PhysicsJagiellonian UniversityKrakowPoland

Personalised recommendations