The European Physical Journal Special Topics

, Volume 222, Issue 9, pp 2179–2186 | Cite as

Molecular dynamics studies of polyurethane nanocomposite hydrogels

  • J. StrankowskaEmail author
  • Ł. Piszczyk
  • M. Strankowski
  • M. Danowska
  • K. Szutkowski
  • S. Jurga
  • J. Kwela
Regular Article


Polyurethane PEO-based hydrogels have a broad range of biomedical applicability. They are attractive for drug-controlled delivery systems, surgical implants and wound healing dressings. In this study, a PEO based polyurethane hydrogels containing Cloisite® 30B, an organically modified clay mineral, was synthesized. Structure of nanocomposite hydrogels was determined using XRD technique. Its molecular dynamics was studied by means of NMR spectroscopy, DMA and DSC analysis. The mechanical properties and thermal stability of the systems were improved by incorporation of clay and controlled by varying the clay content in polymeric matrix. Molecular dynamics of polymer chains depends on interaction of Cloisite® 30B nanoparticles with soft segments of polyurethanes. The characteristic nanosize effect is observed.


Polyurethane Storage Modulus European Physical Journal Special Topic Hard Segment Soft Segment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N.A. Peppas, P. Bures, W. Leobandug, H. Ichikawa, Eur. J. Pharm. Biopharm. 50, 27 (2000)CrossRefGoogle Scholar
  2. 2.
    J. Yeh, C. Yao, C. Hsieh, H. Yang, C. Wu, Eur. Polym. J. 44, 2777 (2008)CrossRefGoogle Scholar
  3. 3.
    Z. Weian, L. Wei, F. Yuee, Mat. Lett. 59, 2876 (2005)CrossRefGoogle Scholar
  4. 4.
    C.M. Paranhos, B.G. Soares, J.C. Machado, D. Windmoller, L.A. Pessan, Eur. Polym. J. 43, 4882 (2007)CrossRefGoogle Scholar
  5. 5.
    P. Petrini, S. Fare, A. Piva, M.C. Tanzi, J. Mat. Sci. 14, 683 (2003)Google Scholar
  6. 6.
    H. Yoo, H. Kim, J. Biomed. Mater. Res. Part B: Appl. Biomater. 85B, 326 (2008)CrossRefGoogle Scholar
  7. 7.
    R. Kimmich, E. Anoardo, Progr. Nucl. Magnetic Res. Spectrosc. 44, 257 (2004)CrossRefGoogle Scholar
  8. 8.
    J. Krzaczkowska, Z. Fojud, M. Kozak, S. Jurga, Acta Phys. Polonica A 108, 187 (2005)ADSGoogle Scholar
  9. 9.
    J. Strankowska, M. Strankowski, L. Piszczyk, J. Haponiuk, J. Kwela, Mater. Sci. Forum 714, 123 (2012)CrossRefGoogle Scholar
  10. 10.
    M. Alexandre, P. Dubois, Mater. Sci. Eng. 28, 1 (2000)CrossRefGoogle Scholar
  11. 11.
    N. Ricardo, M. Lahtinen, C. Price, F. Heatley, Polymer Int. 51, 627 (2002)CrossRefGoogle Scholar
  12. 12.
    J. Krzaczkowska, M. Strankowski, S. Jurga, K. Jurga, A. Pietraszko, J. Non-Cryst. Solids 356, 945 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    M. Danowska, L. Piszczyk, M. Strankowski, M. Gazda, J.T. Haponiuk, J. Appl. Polymer Sci. 1 (2013)Google Scholar
  14. 14.
    M. Strankowski, J. Strankowska, M. Gazda, L. Piszczyk, G. Nowaczyk, S. Jurga, eXPRESS Polymer Lett. 6, 610 (2012)CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  • J. Strankowska
    • 1
    Email author
  • Ł. Piszczyk
    • 2
  • M. Strankowski
    • 2
  • M. Danowska
    • 3
  • K. Szutkowski
    • 4
  • S. Jurga
    • 4
  • J. Kwela
    • 1
  1. 1.Division of Applied Physics, Institute of Experimental PhysicsUniversity of GdańskGdańskPoland
  2. 2.Department of Polymer Technology, Chemical FacultyGdańsk University of TechnologyGdańskPoland
  3. 3.Department of Solid State Physics, Faculty of Applied Physics and MathematicsGdańsk University of TechnologyGdańskPoland
  4. 4.Department of Macromolecular Physics, Faculty of PhysicsAdam Mickiewicz UniversityPoznańPoland

Personalised recommendations