The European Physical Journal Special Topics

, Volume 222, Issue 9, pp 2171–2178 | Cite as

Modelling of emission spectra of Pr I by summarizing hyperfine patterns of overlapping spectral lines

  • B. Gamper
  • S. Khan
  • I. Siddiqui
  • L. WindholzEmail author
Regular Article


We present studies of the the hyperfine (hf) structure of spectral lines of Praseodymium (Pr) by laser spectroscopic investigations as well as by analyzing Fourier Transform (FT) spectra. The experimental part of our work is done with the technique of laser-induced fluorescence (LIF) spectroscopy in a hollow cathode lamp. We present detailed studies of the very small region of 1.5 Å (from 5810.5 Å to 5812.0 Å) in the visible area of the FT spectrum where at least 14 spectral lines are overlapping. In the investigated region we discovered two new even levels and three new odd levels and could classify 11 new spectral lines. The final goal is to model the emission spectrum by a sum of the hf profiles of all spectral lines in a certain region. Application of such modelling may be found in analyzing highly resolved stellar spectra.


Spectral Line European Physical Journal Special Topic Praseodymium Hollow Cathode Lamp Electric Quadrupole Moment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.M. Macfarlane, D.P. Burum, R.M. Shelby, Phys. Rev. Lett. 49, 636 (1982)ADSCrossRefGoogle Scholar
  2. 2.
    K.D. Böklen, T. Bossert, W. Foerster, H.H. Fuchs, G. Nachtsheim, Z. Phys. A 274, 195 (1975)ADSCrossRefGoogle Scholar
  3. 3.
    A. King, Astrophys. J. 68, 194 (1928)ADSCrossRefGoogle Scholar
  4. 4.
    A. Ginibre, Phys. Scripta 39, 710 (1989)ADSCrossRefGoogle Scholar
  5. 5.
    J. Ruczkowski, E. Stachowska, M. Elantńkowska, G.H. Guthöhrlein, J. Dembczyński, Phys. Scripta 68, 133 (2003)ADSCrossRefzbMATHGoogle Scholar
  6. 6.
    B. Furmann, D. Stefańska, J. Dembczyński, E. Stachowska, Phys. Scripta 72, 300 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    B. Furmann, D. Stefańska, J. Dembczyński, E. Stachowska, Phys. Scripta 74, 658 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    N. Jaritz, H. Jäger, L. Windholz, Eur. Phys. J. D 18, 267 (2002)ADSGoogle Scholar
  9. 9.
    B. Gamper, Z. Uddin, M. Jahangir, O. Allard, H. Knöckel, E. Tiemann, L. Windholz, J. Phys. B: At. Mol. Opt. Phys. 44, 045003 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    K. Shamim, I. Siddiqui, L. Windholz, Eur. J. Phys. D 64, 209 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    T.I. Syed, I. Siddiqui, K. Shamim, Z. Uddin1, G.H. Guthöhrlein, L. Windholz, Phys. Scr. 84, 065303 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    R.L. Kurucz, Phys. Scr. 47, 110 (1993)CrossRefGoogle Scholar
  13. 13.
    Program package “Fitter”, developed by Guthöhrlein G H, Institute for Experimental Physics, Helmuth Schmidt Universität der Bundeswehr HamburgGoogle Scholar
  14. 14.
    Z. Uddin, I. Siddiqui, S. Khan, B. Gamper, E.H. Abdul-Hafidh, L. Windholz, J. Phys. Sci. Appl. 2, 88 (2012)Google Scholar
  15. 15.
    L. Windholz, G.H. Guthöhrlein, Phys. Scripta T105, 55 (2003)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  1. 1.Institut für ExperimentalphysikTechnische Universität GrazGrazGermany
  2. 2.Pakistan Institute of Engineering and Applied Science (PIEAS)P.O. Nilore IslamabadPakistan
  3. 3.Department of PhysicsUniversity of KarachiKarachiPakistan

Personalised recommendations