The European Physical Journal Special Topics

, Volume 222, Issue 9, pp 2143–2156 | Cite as

Plasma-wall interactions in DC discharges and sheath of Langmuir probes

  • A. Cenian
  • H. Rachubinski
  • A. Chernukho
  • M. Dudeck


The plasma-wall interactions in various DC discharges and sheath of Langmuir probe are analyzed and discussed. The methods of their investigations are discussed including fluid and PIC MC. Various assumptions used in fluid models e.g. plasma neutrality, Bohm criterion, Boltzmann electrons approximation, etc. are analyzed. Ion heating and electron cooling effect at the DC plasma wall is discussed and explained. Langmuir probes measurements in high-temperature and ion thruster plasma are analyzed. The secondary electron emission influences the IV characteristic of Langmuir probe especially at positive voltages. However, only elastic reflection processes really contribute significantly to the probe current. The elastic SEE processes reflect electrons from probe with the same relatively high speed. It was observed that the axial magnetic field influences probe characteristics and floating potential more significantly than radial field. The axial field deflects all electrons approaching probe.


European Physical Journal Special Topic Langmuir Probe Electron Energy Distribution Function Secondary Electron Emission Sheath Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Langmuir, Proc. Natl Acad. Sci 14, 627 (1928)ADSCrossRefGoogle Scholar
  2. 2.
    L. Tonks, I. Langmuir, Phys. Rev. 34, 876 (1929)ADSCrossRefGoogle Scholar
  3. 3.
    D. Bohm, The Characteristics of Electrical Discharges in Magnetic Fields (McGraw-Hill, New York, 1949), p. 77Google Scholar
  4. 4.
    K.-U. Riemann, J. Phys. D.: Appl. Phys. 24, 493 (1999)ADSCrossRefGoogle Scholar
  5. 5.
    B.A. Bailey, Experimental studies of the Bohm criterion for plasmas with one or two species of positive ions, BiblioLabsII, ISBN-13: 9781243520340 (2011)Google Scholar
  6. 6.
    N. Sternberg, V.A. Godyak, IEEE Trans. Plasma Sci. 35, 1341 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    S.D. Baalrud, C.C. Hegna, Plasma Sources Sci. Technol. 20, 025013 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    V.A. Godyak, Phys. Lett. A 89, 80 (1982)ADSCrossRefGoogle Scholar
  9. 9.
    H.-B. Valentini, Phys. Plasmas 3, 1459 (1996)ADSCrossRefGoogle Scholar
  10. 10.
    X.P. Chen, Phys. Plasmas 5, 804 (1997)ADSCrossRefGoogle Scholar
  11. 11.
    K.-U. Riemann, Phys. Plasmas 4, 4158 (1997)ADSCrossRefGoogle Scholar
  12. 12.
    R.N. Franklin, J. Phys. D: Appl. Phys. 36, 2821 (2003)ADSCrossRefGoogle Scholar
  13. 13.
    R.P. Brinkmann, J. Phys. D: Appl. Phys. 44, 42002 (2011)CrossRefGoogle Scholar
  14. 14.
    P. Chabert, T.E. Sheridan, J. Appl. Phys. 33, 1854 (2011)Google Scholar
  15. 15.
    A. Kono, J. Phys. D: Appl. Phys. 34, 1083 (2001)ADSCrossRefGoogle Scholar
  16. 16.
    E. Kawamura, J.H. Ingold, J. Phys. D: Appl. Phys. 34, 3150 (2001)ADSCrossRefGoogle Scholar
  17. 17.
    O. Groos, Z. Phys. 88, 741 (1934)ADSCrossRefGoogle Scholar
  18. 18.
    C.M. Ferreira, J. Loureiro, J. Appl. Phys. 57, 82 (1985)ADSCrossRefGoogle Scholar
  19. 19.
    A. Cenian, A. Chernukho, C. Leys, Radiation Phys. Chem. 68, 109 (2003)ADSCrossRefGoogle Scholar
  20. 20.
    S.L. Lin, J.N. Bardsley, J. Chem. Phys. 66, 435 (1977)ADSCrossRefGoogle Scholar
  21. 21.
    A.V. Phelps, the cross section available on (unpublished) (1999)
  22. 22.
    M.A. Lieberman, A.J. Lichtenberg, A Wiley-Interscience Publication (John Wiley & Sons, Inc., 1994)Google Scholar
  23. 23.
    A. Cenian, Physical processes in the CO2 -lasers media (IMP PAN Publishers, Gdansk, 2006)Google Scholar
  24. 24.
    T. Kopiczyski, DSc. thesis, Institute of Fluid Flow Machines, Polish Academy of Sciences, Gdansk, Poland, 1977Google Scholar
  25. 25.
    M. Tichy, M. Sicha, P. David, T. David, Contrib. Plasma Phys. 34, 59 (1994)ADSCrossRefGoogle Scholar
  26. 26.
    F. Taccogna, S. Longo, M. Capitelli, Eur. Phys. J. AP 22, 29 (2003)ADSCrossRefGoogle Scholar
  27. 27.
    F. Taccogna, S. Longo, M. Capitelli, Contrib. Plasma Phys. 44, 594 (2004)ADSCrossRefGoogle Scholar
  28. 28.
    A. Cenian, A. Chernukho, A. Bogaerts, C. Leys, Khimicheskaya Fizika 23, 3 (2004)Google Scholar
  29. 29.
    A. Cenian, A. Chernukho, A. Bogaerts, R. Gijbels, C. Leys, J. Appl. Phys. 97, 123 (2005)CrossRefGoogle Scholar
  30. 30.
    Z. Sternovsky, S. Robertson, M. Lampe, J. Appl. Phys. 94, 1374 (2003)ADSCrossRefGoogle Scholar
  31. 31.
    A.V. Phelps, J. Appl. Phys. 76, 747 (1994)ADSCrossRefGoogle Scholar
  32. 32.
    V. Pletnev, J.G. Laframboise, Phys. Plasmas 13, 073503 (2006)ADSCrossRefGoogle Scholar
  33. 33.
    J.G. Laframboise, National Technical Information Service Document No. AD 634596 (Institute for Aerospace Report No. 100 Springfield, VA, 1966)Google Scholar
  34. 34.
    F. Taccogna, S. Longo, M. Capitelli, Phys. Plasmas 13, 043501 (2006)ADSCrossRefGoogle Scholar
  35. 35.
    F. Taccogna, S. Longo, M. Capitelli, Contrib. Plasma Phys. 48, 509 (2008)ADSCrossRefGoogle Scholar
  36. 36.
    Z. Bonaventura, D. Trunec, P. Zikan, Proc. of 30th ICPIG, August 28th – September 2nd, 2011, Belfast, UK, ,
  37. 37.
    A.M. Spirkin, A Three-dimensional Particle-in-Cell Methodology on Unstructured Voronoi Grids with Applications to Plasma Microdevices, Ph.D. Dissertation at Worcester Polytechnic Institute, 2006Google Scholar
  38. 38.
    J. Kovacic, T. Gyergyek, M. Erek, Proc. of the International Conference Nuclear Energy for New Europe, Portoro, Slovenia (2010)Google Scholar
  39. 39.
    D. Tskhakaya jun, S. Jachmich, T. Eich, W. Fundamenski, JET-EFDA contributors, J. of Nucl. Materials 415, 860 (2011)CrossRefGoogle Scholar
  40. 40.
    A. Cenian, A. Chernukho, H. Rachubiski, M. Dudeck, 32nd International Electric Propulsion Conference, Wiesbaden, Germany, September 11–15, 2011, contributed Papers, IEPC-2011-270Google Scholar
  41. 41.
    G. Fussmann, U. Ditte, W. Eckstein, et al., Divertor parameters, divertor operation in ASDEX, J. Nucl. Mater. 128-129, 350 (1984)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  • A. Cenian
    • 1
  • H. Rachubinski
    • 1
  • A. Chernukho
    • 2
  • M. Dudeck
    • 3
  1. 1.Institute of Fluid-Flow Machinery PASciWarsawPoland
  2. 2.Advanced Research and Technologies PteMinskRepublic of Belarus
  3. 3.University of Paris 6ParisFrance

Personalised recommendations