The European Physical Journal Special Topics

, Volume 222, Issue 9, pp 2103–2118 | Cite as

Spectroscopic issues in optical polarization of 3He gas for Magnetic Resonance Imaging of human lungs

  • T. Dohnalik
  • B. Głowacz
  • Z. Olejniczak
  • T. Pałasz
  • M. Suchanek
  • A. WojnaEmail author


The Magnetic Resonance Imaging (MRI) of human lungs for diagnostic purposes became possible by using nuclear spin hyperpolarized noble gases, such as 3He. One of the methods to polarize 3He is the Metastability Exchange Optical Pumping (MEOP), which up to now has been performed at low pressure of about 1 mbar and in low magnetic field below 0.1 T (standard conditions). The equilibrium nuclear polarization can reach up to 80%, but it is dramatically reduced during the subsequent gas compression to the atmospheric pressure that is necessary for the lungs examination. Further polarization losses occur during the transportation of the gas to the hospital scanner. It was shown recently that up to 50% polarization can be obtained at elevated pressure exceeding 20 mbar, by using magnetic field higher than 0.1 T (nonstandard conditions). Therefore, following the construction of the low-field MEOP polarizer located in the lab, a dedicated portable unit was developed, which uses the magnetic field of the 1.5 T MR medical scanner and works in the continuous-flow regime. The first in Poland MRI images of human lungs in vivo were obtained on the upgraded to 3He resonance frequency Siemens Sonata medical scanner. An evident improvement in the image quality was achieved when using the new technique. The paper shows how spectroscopic measurements of 3He carried out in various experimental conditions led both to useful practical results and to significant progress in understanding fundamental processes taking place during MEOP.


European Physical Journal Special Topic Nuclear Polarization Polarize Beam Splitter Helium Plasma Ground State Atom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F.D. Colegrove, et al., Phys. Rev. 132, 2561 (1963)ADSCrossRefGoogle Scholar
  2. 2.
    M. Leduc, J. Phys. Colloques (France) 51, 317 (1990)CrossRefGoogle Scholar
  3. 3.
    M. Abboud, et al., Europhysics Lett. 68, 480 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    E. Courtade, et al., The European Phys. J. D 21, 25 (2002)ADSCrossRefGoogle Scholar
  5. 5.
    B. Glowacz, Detection of metastable He2* molecules in helium plasma Ph.D. thesis, Uniwersytet Jagiellonski, Krakow; Université Pierre et Marie Curie Paris, 2011Google Scholar
  6. 6.
    C. Mrozik, et al., J. Phys.: Conf. Ser. 294, 012007 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    Güldner, et al., J. Phys.: Conf. Ser. 294, 012006 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    Z. Salhi, et al., Magnetic Res. Med. 67, 1758 (2012)CrossRefGoogle Scholar
  9. 9.
    T.R. Gentile, et al., J. Res. National Inst. Stand. Technol. 106, 709 (2001)CrossRefGoogle Scholar
  10. 10.
    P.J. Nacher, Peristaltic compressors suitable for relaxation-free compression of polarized gas (United States patent no. US6655931, 2003)Google Scholar
  11. 11.
    G. Collier, et al., Optica Applicata 42, 223 (2012)Google Scholar
  12. 12.
    K. Suchanek, et al., Eur. Phys. J. Special Topics 144, 67 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    A. Nikiel, et al., Eur. Phys. J. Special Topics 144, 255 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    A. Nikiel-Osuchowska, et al., Euro. Phys. J. Appl. Phys.,, (submitted) (2013)
  15. 15.
    G. Collier, Metastability Exchange Optical Pumping (MEOP) of 3He in situ, Ph.D. thesis, Jagiellonian University in Krakow, 2011Google Scholar
  16. 16.
    G. Tastevin, et al., Appl. Phys. B 78, 145 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    P.J. Nacher, M. Leduc, J. Phys. (France) 46, 2057 (1985)CrossRefGoogle Scholar
  18. 18.
    E. Stoltz, et al., Appl. Phys. B 63, 629 (1996)ADSGoogle Scholar
  19. 19.
    M. Batz, Metastability exchange optical pumping of 3He gas up to 30 mT: Efficiency measurements and evidence of laser-induced nuclear relaxation, Ph.D. thesis, Université Pierre et Marie Curie Paris and Johannes Gutenberg-Universiät Mainz, 2011Google Scholar
  20. 20.
    F. Laloë, Annales Phys. 6, 5 (1971)Google Scholar
  21. 21.
    M. Leduc, et al., J. Phys. II (France) 2, 2159 (1992)CrossRefGoogle Scholar
  22. 22.
    W. Lorenzon, et al., Phys. Rev. A 47, 468 (1993)ADSCrossRefGoogle Scholar
  23. 23.
    C. Talbot, et al., J. Phys.: Conf. Ser. 294, 012008 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    M. Abboud, Pompage optique de l’ helium-3 a forte pression dans un champ magnetique de 1.5 Tesla, Ph.D. thesis, Université Pierre et Marie Curie Paris, 2005Google Scholar
  25. 25.
    L. Wilmer Anderson, et al., Phys. Rev. 116, 87 (1959)ADSCrossRefGoogle Scholar
  26. 26.
    T. Dohnalik, et al., Eur. Phys. J. - Appl. Phys. 54, 20802 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    F. Pereira Dos Santos, et al., Eur. Phys. J. D 14, 15 (2001)ADSCrossRefGoogle Scholar
  28. 28.
    P.-J. Nacher, et al., Acta Physica Polonica B 33, 2225 (2002)ADSGoogle Scholar
  29. 29.
    G.D. Cates, et al., Phys. Rev. A 37, 2877 (1988)ADSCrossRefGoogle Scholar
  30. 30.
    W.A. Fitzsimmons, et al., Phys. Rev. 179, 156 (1969)ADSCrossRefGoogle Scholar
  31. 31.
    A. Deninger, et al., Eur. Phys. J. D 38, 439 (2006)ADSCrossRefGoogle Scholar
  32. 32.
    J. Schmiedeskamp, et al., Eur. Phys. J. D 38, 427 (2006)ADSCrossRefGoogle Scholar
  33. 33.
    J. Schmiedeskamp, et al., Eur. Phys. J. D 38, 445 (2006)ADSCrossRefGoogle Scholar
  34. 34.
    W. Heil, et al., Phys. Lett. A 201, 337 (1995)ADSCrossRefGoogle Scholar
  35. 35.
    J.L. Flowers, et al., Instr. Meas. IEEE Trans. 46, 104 (1997)CrossRefGoogle Scholar
  36. 36.
    M. Batz, et al., J. Phys.: Conf. Ser. 294, 012002 (2011)ADSCrossRefGoogle Scholar
  37. 37.
    E. Courtade, Pompage optique de l’helium dans des conditions non-standard, Ph.D. thesis, Université Paris XI, 2001Google Scholar
  38. 38.
    F. Emmert, et al., J. Phys. D 21, 667 (1988)ADSCrossRefGoogle Scholar
  39. 39.
    G. Tastevin, et al., J. Low Temperature Phys. 158, 339 (2010)ADSCrossRefGoogle Scholar
  40. 40.
    G.H. Dieke, E.S. Robinson, Phys. Rev. 80, 1 (1950)ADSCrossRefGoogle Scholar
  41. 41.
    S. Takao, et al., J. Chemical Phys. 73, 148 (1980)ADSCrossRefGoogle Scholar
  42. 42.
    M. Kristensen, N. Bjerre, J. Chemical Phys. 93, 983 (1990)ADSCrossRefGoogle Scholar
  43. 43.
    I. Hazell, et al., J. Molecular Spectroscopy 172, 135 (1995)ADSCrossRefGoogle Scholar
  44. 44.
    W. Lichten, T. Wik, J. Chem. Phys. 69, 98 (1978)ADSCrossRefGoogle Scholar
  45. 45.
    G. Collier, et al., J. Appl. Phys. [arXiv:1302.4863], (submitted) (2013)

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  • T. Dohnalik
    • 1
  • B. Głowacz
    • 1
  • Z. Olejniczak
    • 2
  • T. Pałasz
    • 1
  • M. Suchanek
    • 3
  • A. Wojna
    • 1
    Email author
  1. 1.M. Smoluchowski Institute of PhysicsJagiellonian UniversityKrakówPoland
  2. 2.Institute of Nuclear PhysicsPolish Academy of SciencesKrakówPoland
  3. 3.Department of Chemistry and PhysicsUniversity of Agriculture in KrakówKrakówPoland

Personalised recommendations