Advertisement

The European Physical Journal Special Topics

, Volume 222, Issue 9, pp 2067–2084 | Cite as

Multiple ionization under strong XUV to X-ray radiation

  • P. Lambropoulos
  • G. M. Nikolopoulos
Review

Abstract

We review the main aspects of multiple photoionization processes in atoms exposed to intense, short wavelength radiation. The main focus is the theoretical framework for the description of such processes as well as the conditions under which direct multiphoton multiple ionization processes can dominate over the sequential ones. We discuss in detail the mechanisms available in different wavelength ranges from the infrared to the hard X-rays. The effect of field fluctuations, present at this stage in all SASE free-electron-laser (FEL) facilities, as well as the effect of the interaction volume integration, are also discussed.

Keywords

Photon Energy European Physical Journal Special Topic Free Electron Laser Direct Channel Double Ionization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T.S. Luk, et al., Phys. Rev. Lett. 51, 110 (1983)ADSCrossRefGoogle Scholar
  2. 2.
    T.S. Luk, et al., Phys. Rev. A 32, 214 (1985)ADSCrossRefGoogle Scholar
  3. 3.
    K. Boyer, C.K. Rhodes, Phys. Rev. Lett. 54, 1490 (1985)ADSCrossRefGoogle Scholar
  4. 4.
    P. Lambropoulos, Phys. Rev. Lett. 55, 2141 (1985)ADSCrossRefGoogle Scholar
  5. 5.
    P. Lambropoulos, Comments At. Mol. Phys. 20, 199 (1987) and references thereinCrossRefGoogle Scholar
  6. 6.
    P. Lambropoulos, X. Tang, J. Opt. Soc. Am. B 4, 821 (1987)ADSCrossRefGoogle Scholar
  7. 7.
    X. Tang, P. Lambropoulos, Phys. Rev. Lett. 58, 108 (1987)ADSCrossRefGoogle Scholar
  8. 8.
    A.L. Robinson, Science 232, 1193 (1986)ADSCrossRefGoogle Scholar
  9. 9.
    D.N. Fittinghoff, et al., Phys. Rev. Lett. 69, 2642 (1992)ADSCrossRefGoogle Scholar
  10. 10.
    P.B. Corcum, Phys. Rev. Lett. 71, 1994 (1993)ADSCrossRefGoogle Scholar
  11. 11.
    A. Scrinzi, et al., J. Phys. B: At. Mol. Opt. Phys. 39, R1 (2006)CrossRefGoogle Scholar
  12. 12.
    A. L’Huillier, et al., J. Opt. Soc. Am. B 6, 1790 (1989)ADSCrossRefGoogle Scholar
  13. 13.
    A.A. Sorokin, et al., Phys. Rev. Lett. 99, 213002 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    M. Richter, et al., J. Phys. B: At. Mol. Opt. Phys. 43, 194005 (2010) and references thereinADSCrossRefGoogle Scholar
  15. 15.
    M. Richter, et al., Phys. Rev. Lett. 102, 163002 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    M.G. Makris, P. Lambropoulos, A. Mihelic, Phys. Rev. Lett. 102, 033002 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    P. Lambropoulos, K.G. Papamihail, P. Decleva, J. Phys. B: At. Mol. Opt. Phys. 44, 175402 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    J. Feist, et al., Phys. Rev. A 77, 043420 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    Foumouo, et al., J. Phys. B: At. Mol. Opt. Phys. 41, 051001 (2008) and references thereinADSCrossRefGoogle Scholar
  20. 20.
    A. Rudenko, et al., Phys. Rev. Lett. 101, 073003 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    R. Moshammer, et al., Phys. Rev. Lett. 98, 203001 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    T. Ishikawa, et al., Nat. Photonics 6, 540 (2012)MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    B. Rudek, et al., Nat. Photonics 6, 858 (2012)MathSciNetADSCrossRefGoogle Scholar
  24. 24.
    H. Fukuzawa, et al., Phys. Rev. Lett. 110, 173005 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    L. Malega, et al., J. Phys. B: At. Mol. Opt. Phys. B 45, 175601 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    A. L’Huillier, G. Wendin, Phy. Rev. A 36, 5632 (1987)ADSCrossRefGoogle Scholar
  27. 27.
    A. Emmanouilidou, et al., J. Phys. B: At. Mol. Opt. Phys. B 46, 111001 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    L.A.A. Nikolopoulos, et al., Phys. Rev. Lett. 90, 043003 (2003)ADSCrossRefGoogle Scholar
  29. 29.
    T. Nakajima, L.A.A. Nikolopoulos Phys. Rev. A 66, 041402(R), (2002)ADSCrossRefGoogle Scholar
  30. 30.
    P. Lambropoulos, G.M. Nikolopoulos, K.G. Papamihail, Phys. Rev. A 83, 021407(R) (2011)ADSCrossRefGoogle Scholar
  31. 31.
    J. Krasinski, et al., Opt. Commun. 12, 304 (1974)ADSCrossRefGoogle Scholar
  32. 32.
    J.W. Goodman, Statistical Optics (Wiley, New York, 1985)Google Scholar
  33. 33.
    R. Loudon, The Quantum Theory of Light, 3rd ed. (Oxford University Press, Oxford, 2000)Google Scholar
  34. 34.
    C. Lecompte, et al., Phys. Rev. Lett. 32, 265 (1974)ADSCrossRefGoogle Scholar
  35. 35.
    E.L. Saldin, E.A. Schneidmiller, M.V. Yurkov, Opt. Commun. 148, 383 (1998)ADSCrossRefGoogle Scholar
  36. 36.
    E.L. Saldin, E.A. Schneidmiller, M.V. Yurkov, Nucl. Instrum. Methods A 507, 106 (2003)ADSCrossRefGoogle Scholar
  37. 37.
    E.L. Saldin, E.A. Schneidmiller, M.V. Yurkov, New J. Phys. 12, 035010 (2010)ADSCrossRefGoogle Scholar
  38. 38.
    S. Krinsky, Y. Li, Phys. Rev. E 73, 066501 (2006)ADSCrossRefGoogle Scholar
  39. 39.
    S. Krinsky, R.L. Gluckstern, Phys. Rev. ST Accel. Beams 6, 050701 (2003)ADSCrossRefGoogle Scholar
  40. 40.
    W. Ackermann, et al., Nature Photonics 1, 336 (2007)ADSCrossRefGoogle Scholar
  41. 41.
    P. Emma, et al., Nature Photonics 4, 641 (2010) and references thereinADSCrossRefGoogle Scholar
  42. 42.
    G.M. Nikolopoulos, P. Lambropoulos, Phys. Rev. A 86, 033420 (2012)ADSCrossRefGoogle Scholar
  43. 43.
    N. Rohringer, R. Santra, Phys. Rev. A 77, 053404 (2008)ADSCrossRefGoogle Scholar
  44. 44.
    T. Pfeifer, Y. Jiang, S. Düsterer, R. Moshammer, J. Ullrich, Opt. Lett. 35, 3441 (2010)ADSCrossRefGoogle Scholar
  45. 45.
    Y.H. Jiang, et al., Phys. Rev. A 82, 041403(R) (2010)ADSCrossRefGoogle Scholar
  46. 46.
    G.M. Nikolopoulos, P. Lambropoulos, J. Phys. B: At. Mol. Opt. Phys. B (in press)Google Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  • P. Lambropoulos
    • 1
    • 2
  • G. M. Nikolopoulos
    • 1
  1. 1.Institute of Electronic Structure & LaserFORTHHeraklionGreece
  2. 2.Department of PhysicsUniversity of CreteCreteGreece

Personalised recommendations