The European Physical Journal Special Topics

, Volume 222, Issue 9, pp 2035–2055 | Cite as

K-shell double core-hole spectroscopy in molecules

  • M. N. Piancastelli


A great deal of attention has been devoted in the last few years to photoionization processes in isolated molecules leading to the formation of double core-hole (DCH) states. There are two main experimental avenues to induce such processes, namely single-photon absorption followed by the simultaneous ejection of two core electrons, and x-ray-induced multiphoton processes leading to the production of DCH states via the sequential absorption of two soft x- ray photons on a time scale on the order of the molecular Auger lifetime (4–8 femtoseconds for light elements). The formation of molecular two-site (ts) DCH states, in particular, shows great potential as a powerful tool for chemical analysis. A compelling motivation for the study of ts-DCH states is their ability to probe the local chemical environment more sensitively than either single core-hole (SCH) or single-site (ss) DCH states. The enhanced sensitivity originates from the fact that the double ionization potential (DIP) of ts-DCH states is directly coupled to induced changes in the valence charge distribution at the two different atomic sites. Here a review of the recent literature is presented on both types of experiments, and on the related theoretical work.


Auger European Physical Journal Special Topic Auger Electron Auger Spectrum Core Hole 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Siegbahn, C. Nordling, G. Johansson, J. Hedman, P.F. Hedn, K. Hamrin, U. Gelius, T. Bergmark, L.O. Werme, R. Manne, Y. Baer, ESCA Applied to Free Molecules (North-Holland, Amsterdam, 1971)Google Scholar
  2. 2.
    L. Cederbaum, et al., J. Chem. Phys. 85, 6513 (1986)ADSCrossRefGoogle Scholar
  3. 3.
    M. Tashiro, M. Ehara, H. Fukuzawa, K. Ueda, C. Buth, N.V. Kryshevoi, L.S. Cederbaum, J. Chem. Phys. 132, 184302 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    M. Tashiro, M. Ehara, K. Ueda, Chem. Phys. Lett. 496, 217 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    J.H.D. Eland, M. Tashiro, P. Linusson, M. Ehara, K. Ueda, R. Feifel, Phys. Rev. Lett. 105, 213005 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    P. Lablanquie, F. Penent, J. Palaudoux, L. Andric, P. Selles, S. Carniato, K. Buar, M. Zitnik, M. Huttula, J.H.D. Eland, E. Shigemasa, K. Soejima, Y. Hikosaka, I.H. Suzuki, M. Nakano, K. Ito, Phys. Rev. Lett. 106, 063003 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    P. Lablanquie, T.P. Grozdanov, M. Zitnik, S. Carniato, P. Selles, L. Andric, J. Palaudoux, F. Penent, H. Iwayama, E. Shigemasa, Y. Hikosaka, K. Soejima, M. Nakano, I.H. Suzuki, K. Ito, Phys. Rev. Lett. 107, 193004 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    J.H.D. Eland, O. Vieuxmaire, T. Kinugawa, P. Lablanquie, R.I. Hall, F. Penent, Phys. Rev. Lett. 90, 053003 (2003)ADSCrossRefGoogle Scholar
  9. 9.
    R. Madden, K. Codling, Phys. Rev. Lett. 10, 516 (1963)ADSCrossRefGoogle Scholar
  10. 10.
    R. Santra, N.V. Kryzhevoi, L.S. Cederbaum, Phys. Rev. Lett. 103, 013002 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    J.P. Cryan, J.M. Glownia, J. Andreasson, A. Belkacem, N. Berrah, C.I. Blaga, C. Bostedt, J. Bozek, C. Buth, L.F. DiMauro, L. Fang, O. Gessner, M. Guehr, J. Hajdu, M.P. Hertlein, M. Hoener, O. Kornilov, J.P. Marangos, A.M. March, B.K. McFarland, H. Merdji, V.S. Petrovi, C. Raman, D. Ray, D. Reis, F. Tarantelli, M. Trigo, J.L. White, W. White, L. Young, P.H. Bucksbaum, R.N. Coffee, Phys. Rev. Lett. 105, 083004 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    L. Fang, M. Hoener, O. Gessner, F. Tarantelli, S.T. Pratt, O. Kornilov, C. Buth, M. Gühr, E.P. Kanter, C. Bostedt, J.D. Bozek, P.H. Bucksbaum, M. Chen, R. Coffee, J. Cryan, M. Glownia, E. Kukk, S.R. Leone, N. Berrah, Phys. Rev. Lett. 105, 083005 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    A. Kivimäki, M. Neeb, B. Kempgens, H. M. Köppe, A.M. Bradshaw, Phys. Rev. A 54, 2137 (1996)ADSCrossRefGoogle Scholar
  14. 14.
    B. Kempgens, et al., J. Phys. B 29, 5389 (1996)ADSCrossRefGoogle Scholar
  15. 15.
    E.P. Kanter, R.W. Dunford, B. Krässig, S.H. Southworth, Phys. Rev. Lett. 83, 508 (1999)ADSCrossRefGoogle Scholar
  16. 16.
    S. H. Southworth, et al., Phys. Rev. A 67, 062712 (2003)ADSCrossRefGoogle Scholar
  17. 17.
    N. Berrah, L. Fang, B. Murphy, T. Osipov, K. Ueda, E. Kukk, R. Feifel, P. van der Meulen, P. Salén, H.T. Schmidt, R.D. Thomas, M. Larsson, R. Richter, K.C. Prince, J.D. Bozek, C. Bostedt, S.-I. Wada, M.N. Piancastelli, M. Tashiro, M. Ehara, Proc. Natl. Acad. Sci. U.S.A. 108, 16912 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    J.D. Bozek, Eur. Phys. J. Special Topics 169, 129 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    O. Hemmers, S. Whitfield, P. Glans, H. Wang, D.W. Lindle, R. Wehlitz, I.A. Sellin, Rev. Sci. Instrum. 69, 3809 (1998)ADSCrossRefGoogle Scholar
  20. 20.
    P. Salén, P. van der Meulen, H.T. Schmidt, R.D. Thomas, M. Larsson, R. Feifel, M.N. Piancastelli, L. Fang, B. Murphy, T. Osipov, N. Berrah, E. Kukk, K. Ueda, J.D. Bozek, C. Bostedt, S. Wada, R. Richter, V. Feyer, K.C. Prince, Phys. Rev. Lett. 108, 153003 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    K. Ueda, O. Takahashi, J. Electron Spectrosc. Relat. Phenom. 185, 301 (2012), and references thereinCrossRefGoogle Scholar
  22. 22.
    L.S. Cederbaum, F. Tarantelli, A. Sgamellotti, J. Schirmer, J. Chem. Phys. 86, 2168 (1987)ADSCrossRefGoogle Scholar
  23. 23.
    L.S. Cederbaum, Phys. Rev. A 35, 62 (1987)ADSCrossRefGoogle Scholar
  24. 24.
    M. Tashiro, K. Ueda, M. Ehara, Chem. Phys. Lett. 521, 45 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    M. Tashiro, K. Ueda, M. Ehara, J. Chem. Phys. 135, 15430 (2011)CrossRefGoogle Scholar
  26. 26.
    O. Takahashi, M. Tashiro, M. Ehara, K. Yamasaki, K. Ueda, J. Phys. Chem. A 115, 12070 (2011)CrossRefGoogle Scholar
  27. 27.
    N.V. Kryzhevoi, R. Santra, L.S. Cederbaum, J. Chem. Phys. 135, 084302 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    O. Takahashi, K. Yamasaki, S.-I. Nagaoka, K. Ueda, Chem. Phys. Lett. 518, 44 (2011)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  • M. N. Piancastelli
    • 1
    • 2
  1. 1.Laboratoire de Chimie Physique, Matière et RayonnementUniversité Pierre et Marie CurieParis Cedex 05France
  2. 2.Department of Physics and AstronomyUppsala UniversityUppsalaSweden

Personalised recommendations