Advertisement

The European Physical Journal Special Topics

, Volume 222, Issue 9, pp 2017–2033 | Cite as

Formation of cations and anions upon electron interaction with (doped) helium droplets

  • S. Denifl
Review

Abstract

Superfluid helium droplets have provided a new perspective for studying electron induced chemistry at extremely low temperatures. Helium droplets represent an ideal environment for the formation of novel and exotic agglomerates of atoms and molecules. Mass spectrometry can be used to detect the resulting ions formed upon electron ionization and electron attachment to doped droplets. In the case of electron ionization a helium atom of the droplet is ionized initially and after few resonant charge transfer reactions between helium atoms the charge finally localises on the dopant. An alternative process is Penning ionization of the dopant, where the scattered electron first electronically excites a helium atom on the surface of the droplet. The attachment of a low energy electron leads to formation of an electron bubble inside the droplet which decays by autodetachment or localization on a dopant, if present in the droplet. In the present minireview a general overview about the field of electron scattering with doped helium droplets is given and a presentation of important recent results related to these electron collision studies is given as well.

Keywords

European Physical Journal Special Topic Electron Ionization Water Cluster Helium Atom Cluster Anion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. Echt, T.D. Märk, P. Scheier, in Handbook of Nanophysics, edited by K. Sattler, Vol. 7 (CRC, New York, 2010) (Clusters and Fullerenes)Google Scholar
  2. 2.
    H. Buchenau, E.L. Knuth, J. Northby, J.P. Toennies, C. Winkler, J. Chem. Phys. 92, 6875 (1990)ADSCrossRefGoogle Scholar
  3. 3.
    A.F. Borghesani, in Electronic excitations in liquefied rare gases, edited by W.F. Schmidt and E. Illenberger (American Scientific Publishers, CA, USA, 2005)Google Scholar
  4. 4.
    S. Grebenev, J.P. Toennies, A.F. Vilesov, Science 279, 2086 (1998)ADSCrossRefGoogle Scholar
  5. 5.
    P. Sindzingre, M.L. Klein, D.M. Ceperley, Phys. Rev. Lett. 63, 1601 (1989)ADSCrossRefGoogle Scholar
  6. 6.
    A.R.W. McKellar, Y. Xu, W. Jäger, Phys. Rev. Lett. 97, 183401 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    M. Hartmann, R.E. Miller, J.P. Toennies, A. Vilesov, Phys. Rev. Lett. 75, 1566 (1995)ADSCrossRefGoogle Scholar
  8. 8.
    S. Stringari, J. Treiner, J. Chem. Phys. 87, 5021 (1987)ADSCrossRefGoogle Scholar
  9. 9.
    H. Haberland, in Clusters of atoms and molecules I, edited by H. Haberland (Springer-Verlag, Berlin, Germany, 1994)Google Scholar
  10. 10.
    F. Stienkemeier, K.K. Lehmann, J. Phys. B 39, R127 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    M. Lewerenz, B. Schilling, J.P. Toennies, Chem. Phys. Lett. 206, 381 (1993)ADSCrossRefGoogle Scholar
  12. 12.
    M. Lewerenz, B. Schilling, J.P. Toennies, J. Chem. Phys. 102, 8191 (1995)ADSCrossRefGoogle Scholar
  13. 13.
    J.P. Toennies, A.F. Vilesov, Angew. Chem. Int. Ed. 43, 2622 (2004)CrossRefGoogle Scholar
  14. 14.
    W. Schöllkopf, J.P. Toennies, Science 266, 1345 (1994)ADSCrossRefGoogle Scholar
  15. 15.
    O. Kornilov, J.P. Toennies, Int. J. Mass Spectrom. 280, 209 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    L.F. Gomez, E. Loginov, R. Sliter, A.F. Vilesov, J. Chem. Phys. 135, 154201 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    H. Schöbel, C. Leidlmair, P. Bartl, S. Denifl, T.D. Märk, O. Echt, P. Scheier, J. Phys. Conf. Series 388, 012044 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    C.S. Stark, V.V. Kresin, Phys. Rev. B 81, 085401 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    L. An der Lan, P. Bartl, C. Leidlmair, H. Schöbel, R. Jochum, S. Denifl, T.D. Märk, A.M. Ellis, P. Scheier, J. Chem. Phys. 135, 044309 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    L. An der Lan, P. Bartl, C. Leidlmair, H. Schöbel, S. Denifl, T.D. Märk, A.M. Ellis, P. Scheier, Phys. Rev. B 85, 115414 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    F. Ancilotto, P.B. Lerner, M.W. Cole, J. Low Temp. Phys. 101, 1123 (1995)ADSCrossRefGoogle Scholar
  22. 22.
    A.A. Scheidemann, V.V. Kresin, H. Hess, J. Chem. Phys. 107, 2839 (1997)ADSCrossRefGoogle Scholar
  23. 23.
    K. Nauta, R.E. Miller, Science 287, 293 (2000)ADSCrossRefGoogle Scholar
  24. 24.
    K. Nauta, R.E. Miller, Science 283, 1895 (1999)ADSCrossRefGoogle Scholar
  25. 25.
    F. Ancilotto, M. Barranco, M. Pi, Phys. Rev. Lett. 91, 105302 (2003)ADSCrossRefGoogle Scholar
  26. 26.
    L.F. Gomez, E. Loginov, A.F. Vileosv, Phys. Rev. Lett. 108, 155302 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    F. Bierau, P. Kupser, G. Meijer, G. von Helden, Phys. Rev. Lett. 105, 133402 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    F. Filsinger, D.-S. Ahn, G. Meijer, G. von Helden, Phys. Chem. Phys. 14, 13370 (2012)CrossRefGoogle Scholar
  29. 29.
    M.T. Falconer, W.K. Lewis, R.J. Bemish, R.E. Miller, G.L. Glish, Rev. Sci. Inst. 81, 054101 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    H. Buchenau, J.P. Toennies, J.A. Northby, J. Chem. Phys. 95, 8134 (1991)ADSCrossRefGoogle Scholar
  31. 31.
    S. Feil, K. Gluch, S. Denifl, F. Zappa, O. Echt, P. Scheier, T.D. Märk, Int. J. Mass Spectrom. 252, 166 (2006)ADSCrossRefGoogle Scholar
  32. 32.
    P.W. Stephens, J.G. King, Phys. Rev. Lett. 51, 1538 (1983)ADSCrossRefGoogle Scholar
  33. 33.
    S. Denifl, M. Stano, A. Stamatovic, P. Scheier, T.D. Märk, J. Chem. Phys. 124, 054320 (2006)ADSCrossRefGoogle Scholar
  34. 34.
    B.E. Callicoatt, K. Foerde, L.F. Jung, T. Ruchti, K.C. Janda, J. Chem. Phys. 109, 10195 (1998)ADSCrossRefGoogle Scholar
  35. 35.
    A.M. Ellis, S.F. Yang, Phys. Rev. A 76, 032714 (2007)ADSCrossRefGoogle Scholar
  36. 36.
    P.E. Siska, Rev. Mod. Phys. 65, 337 (1993)ADSCrossRefGoogle Scholar
  37. 37.
    H. Schöbel, P. Bartl, C. Leidlmair, M. Daxner, S. Zöttl, S. Denifl, T.D. Märk, P. Scheier, D. Spangberg, A. Mauracher, D.K. Bohme, Phys. Rev. Lett. 105, 243402 (2010)ADSCrossRefGoogle Scholar
  38. 38.
    A. Scheidemann, B. Schilling, J.P. Toennies, J. Phys. Chem. 97, 2128 (1993)CrossRefGoogle Scholar
  39. 39.
    R. Fröchtenicht, U. Henne, J.P. Toennis, A. Ding, M. Fieber-Erdmann, T. Drewello, J. Chem. Phys. 104, 2548 (1996)ADSCrossRefGoogle Scholar
  40. 40.
    W.K. Lewis, B.E. Applegate, J. Sztaray, B. Sztaray, T. Baer, R.J. Bemish, R.E. Miller, J. Am. Chem. Soc. 126, 11283 (2004)CrossRefGoogle Scholar
  41. 41.
    P. Bartl, K. Tanzer, C. Mitterdorfer, S. Karolczak, E. Illenberger, S. Denifl, P. Scheier, Rapid Commun. Mass Spectrom. 27, 298 (2013)CrossRefGoogle Scholar
  42. 42.
    S.F. Yang, S.M. Brereton, M.D. Wheeler, A.M. Ellis, J. Phys. Chem. A 110, 1791 (2006)CrossRefGoogle Scholar
  43. 43.
    S.F. Yang, S.M. Brereton, M.D. Wheeler, A.M. Ellis, Phys. Chem. Chem. Phys. 7, 4082 (2005)CrossRefGoogle Scholar
  44. 44.
    F. Zappa, S. Denifl, I. Mähr, J. Lecointre, F. Rondino, O. Echt, T.D. Märk, P. Scheier, Eur. Phys. J. D 43, 117 (2007)ADSCrossRefGoogle Scholar
  45. 45.
    S. Denifl, I. Mähr, F. Ferreira da Silva, F. Zappa, T.D. Märk, P. Scheier, Eur. Phys. J. D 51, 73 (2009)ADSCrossRefGoogle Scholar
  46. 46.
    F. Ferreira da Silva, P. Bartl, S. Denifl, T.D. Märk, A.M. Ellis, P. Scheier, Chem. Phys. Chem. 11, 90 (2010)CrossRefGoogle Scholar
  47. 47.
    J. Liu, B. Shepperson, A.M. Ellis, S.F. Yang, Phys. Chem. Chem. Phys. 13, 13920 (2011)CrossRefGoogle Scholar
  48. 48.
    B. Shepperson, J. Liu, A.M. Ellis, S.F. Yang, J. Chem. Phys. 137, 201102 (2012)ADSCrossRefGoogle Scholar
  49. 49.
    S. Denifl, F. Zappa, I. Mähr, A. Mauracher, M. Probst, J. Urban, P. Mach, A. Bacher, D.K. Bohme, O. Echt, T.D. Märk, P. Scheier, J. Chem. Phys. 132, 234307 (2010)ADSCrossRefGoogle Scholar
  50. 50.
    Y. Ren, V.V. Kresin, J. Chem. Phys. 128, 074303 (2008)ADSCrossRefGoogle Scholar
  51. 51.
    W.K. Lewis, C.M. Lindsay, R.E. Miller, J. Chem. Phys. 129, 201101 (2008)ADSCrossRefGoogle Scholar
  52. 52.
    S. Denifl, F. Zappa, I. Mähr, F. Ferreira da Silva, A. Aleem, A. Mauracher, M. Probst, J. Urban, P. Mach, A. Bacher, O. Echt, T.D. Märk, P. Scheier, Angew. Chem. Int. Ed. 48, 8940 (2009)CrossRefGoogle Scholar
  53. 53.
    P. Slavicek, M. Lewerenz, Phys. Chem. Chem. Phys. 12, 1152 (2010)CrossRefGoogle Scholar
  54. 54.
    J. Tiggesbaeumker, F. Stienkemeier, Phys. Chem. Chem. Phys. 9, 4748 (2007)CrossRefGoogle Scholar
  55. 55.
    B. Shepperson, J. Liu, A.M. Ellis, S.F. Yang, J. Phys. Chem. A 115, 7010 (2011) and references cited thereinCrossRefGoogle Scholar
  56. 56.
    S.F. Yang, S.M. Brereton, S. Nandhra, A.M. Ellis, B. Shang, L.-F. Yuan, J. Yang, J. Chem. Phys. 127, 134303 (2007)ADSCrossRefGoogle Scholar
  57. 57.
    F. Ferreiera da Silva, P. Waldburger, S. Jaksch, A. Mauracher, S. Denifl, O. Echt, T.D. Märk, P. Scheier, Chem.-Eur. J. 15, 7101 (2009)CrossRefGoogle Scholar
  58. 58.
    C. Leidlmair, Y. Wang, P. Bartl, H. Schöbel, S. Denifl, M. Probst, M. Alcami, F. Martin, H. Zettergren, K. Hansen, O. Echt, P. Scheier, Phys. Rev. Lett 108, 076101 (2012)ADSCrossRefGoogle Scholar
  59. 59.
    I.T. Steinberger, in Electronic excitations in liquefied rare gases, edited by W.F. Schmidt and E. Illenberger (American Scientific Publishers, Valencia, CA, USA, 2006)Google Scholar
  60. 60.
    K. Martini, J.P. Toennies, C. Winkler, Chem. Phys. Lett. 178, 429 (1991)ADSCrossRefGoogle Scholar
  61. 61.
    U. Henne, J.P. Toennies, J. Chem. Phys. 108, 9327 (1998)ADSCrossRefGoogle Scholar
  62. 62.
    M. Rosenblit, J. Jortner, Phys. Rev. Lett. 75, 4079 (1995)ADSCrossRefGoogle Scholar
  63. 63.
    M. Rosenblit, J. Jortner, J. Chem. Phys. 124, 194506 (2006)ADSCrossRefGoogle Scholar
  64. 64.
    T. Jiang, C. Kim, J.A. Northby, Phys. Rev. Lett. 71, 700 (1993)ADSCrossRefGoogle Scholar
  65. 65.
    J. Gspann, Physica B 169, 519 (1991)ADSCrossRefGoogle Scholar
  66. 66.
    M. Farnik, J.P. Toennies, J. Chem. Phys. 118, 4176 (2003)ADSCrossRefGoogle Scholar
  67. 67.
    S. Denifl, F. Zappa, I. Mähr, A. Mauracher, M. Probst, T.D. Märk, P. Scheier, J. Am. Chem. Soc. 130, 5065 (2008) and references cited thereinCrossRefGoogle Scholar
  68. 68.
    K. Aflatooni, P.D. Burrow, J. Chem. Phys. 113, 1455 (2000)ADSCrossRefGoogle Scholar
  69. 69.
    S. Denifl, A. Mauracher, P. Sulzer, A. Bacher, T.D. Märk, P. Scheier, Int. J. Mass Spectrom. 265, 139 (2007)ADSCrossRefGoogle Scholar
  70. 70.
    E. Alizadeh, L. Sanche, Chem. Rev. 112, 5578 (2012)CrossRefGoogle Scholar
  71. 71.
    I. Baccarelli, I. Bald, F.A. Gianturco, E. Illenberger, J. Kopyra, Phys. Rep. 508, 1 (2011)ADSCrossRefGoogle Scholar
  72. 72.
    B. Boudaïffa, P. Cloutier, D. Hunting, M.A. Huels, L. Sanche, Science 287, 1658 (2000)ADSCrossRefGoogle Scholar
  73. 73.
    S. Denifl, F. Zappa, A. Mauracher, F. Ferreira da Silva, A. Bacher, O. Echt, T.D. Märk, D.K. Böhme, P. Scheier, Chem. Phys. Chem. 9, 1387 (2008)CrossRefGoogle Scholar
  74. 74.
    S. Denifl, F. Zappa, I. Mähr, J. Lecointre, M. Probst, T.D. Märk, P. Scheier, Phys. Rev. Lett. 97, 043201 (2006)ADSCrossRefGoogle Scholar
  75. 75.
    A. Mauracher, H. Schöbel, F. Ferreira da Silva, A. Edtbauer, C. Mitterdorfer, S. Denifl, T.D. Märk, E. Illenberger, P. Scheier, Phys. Chem. Chem. Phys. 11, 8240 (2009)CrossRefGoogle Scholar
  76. 76.
    P. Sulzer, F. Rondino, S. Ptasinska, E. Illenberger, T.D. Märk, P. Scheier, Int. J. Mass Spectrom. 272, 149 (2008)ADSCrossRefGoogle Scholar
  77. 77.
    M. Farnik, J.P. Toennis, J. Chem. Phys. 122, 014307 (2005)ADSCrossRefGoogle Scholar
  78. 78.
    A. Boatwright, J. Jeffs, A.J. Stace, J. Phys. Chem. A 111, 7481 (2007)CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  1. 1.Institut für Ionenphysik und Angewandte PhysikUniversität InnsbruckInnsbruckAustria

Personalised recommendations