Advertisement

The European Physical Journal Special Topics

, Volume 222, Issue 8, pp 1951–1960 | Cite as

Acoustic-elastodynamic interaction in isotropic fractal media

  • H. Joumaa
  • M. Ostoja-Starzewski
Regular Article

Abstract

This research explores the acoustic-elastodynamic interaction in isotropic fractal media. The analysis discusses the direct coupling of two constitutive models under dynamic loading: a continuous solid and an isotropic fractal medium. We consider two situations where in the first, the fractal medium is enclosed within a thin spherical shell (interior problem), while in the second, the fractal medium extends infinitely outside the shell (exterior problem). The two problems are simulated analytically, and the exact solution for the shell displacement is expressed in closed form in the Laplace domain. The formulation of the radiation condition for infinite fractal media is essential to derive the exterior problem’s solution. This study represents a meaningful idealization of real-application problems involving the interaction of multi-constitutive media, e.g. the human brain, whereby fractal features affect the response of this body under various excitations.

Keywords

European Physical Journal Special Topic Human Head Fractal Derivative Acoustic Pressure Fractal Medium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.M. Hastings, G. Sugihara, Fractals: A User’s Guide for the Natural Sciences (Oxford Science Publications, Oxford, 1993)Google Scholar
  2. 2.
    Y. Chen, M. Ostoja-Starzewski, Acta Mechanica 213, 155 (2010)Google Scholar
  3. 3.
    Y. Chen, B. Sutton, C. Conway, S.P. Broglio, M. Ostoja-Starzewski, special issue “Brain Neuro-Mechanics” of International Journal of Numerical Analysis and Modeling Series B 3, 20 (2012)Google Scholar
  4. 4.
    E. Kalmanti, T.G. Maris, In-vivo 21, 641 (2007)Google Scholar
  5. 5.
    V.E. Tarasov, Ann. Phys. 318, 286 (2005)MathSciNetADSCrossRefzbMATHGoogle Scholar
  6. 6.
    V.E. Tarasov, Mod. Phys. Lett. B 19, 721 (2005)ADSCrossRefzbMATHGoogle Scholar
  7. 7.
    J. Li, M. Ostoja-Starzewski, Proc. R. Soc. A 465, 2521 (2009), Errata (2010)MathSciNetADSCrossRefzbMATHGoogle Scholar
  8. 8.
    M. Ostoja-Starzewski, J. Li, ZAMP 60, 1194 (2009)MathSciNetADSCrossRefzbMATHGoogle Scholar
  9. 9.
    P.N. Demmie, M. Ostoja-Starzewski, J. Elasticity 104, 187 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    H. Joumaa, M. Ostoja-Starzewski, ZAMP 62, 1117 (2011)MathSciNetADSCrossRefzbMATHGoogle Scholar
  11. 11.
    H. Joumaa, M. Ostoja-Starzewski, P.N. Demmie, Mathematics and Mechanics of Solids, doi:  10.1177/1081286512454557 (2012)
  12. 12.
    H. Joumaa, M. Ostoja-Starzewski, Mathematics and Computers in Simulation (on line) (2013),  10.1016/j.matcom.2013.03.012
  13. 13.
    X.J. Yang, Advanced Local Fractional Calculus and Its Applications (World Science Publisher, New York, 2012)Google Scholar
  14. 14.
    X.J. Yang, Local Fractional Functional Analysis and Its Applications (Asian Academic Publisher Limited, Hong Kong, 2011)Google Scholar
  15. 15.
    X.J. Yang, D. Baleanu, Thermal Sciences, doi: 10.2298/TSCI1211242 16Y (2012)Google Scholar
  16. 16.
    S.H. Schot, Historia Math. 19, 385 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    I.S. Sokolnikoff, R.M. Redheffer, Mathematics of Physics and Modern Engineering (Mc-Graw Hill Book Company, New York, 1958)Google Scholar
  18. 18.
    C.M. Bender, S.A. Orszag, Advanced Mathematical Methods for Scientists and Engineers (Springer, 1999)Google Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  • H. Joumaa
    • 1
  • M. Ostoja-Starzewski
    • 1
  1. 1.Department of Mechanical Science and EngineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations