Advertisement

The European Physical Journal Special Topics

, Volume 222, Issue 8, pp 1915–1927 | Cite as

Exponential integrators for time–fractional partial differential equations

  • R. GarrappaEmail author
Regular Article

Abstract

Time–fractional partial differential equations can be numerically solved by first discretizing with respect to the spatial derivatives and hence applying a time–step integrator. An exponential integrator for fractional differential equations is proposed to overcome the stability issues due to the stiffness in the resulting semi–discrete system. Convergence properties and the main implementation issues are studied. The advantages of the proposed method are illustrated by means of some test problems.

Keywords

Fractional Order European Physical Journal Special Topic Discrete System Fractional Order System Integer Order 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Caliari, A. Ostermann, Appl. Numer. Math. 59, 568 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    M. Caputo, Water Res. Res. 36, 693 (2000)ADSCrossRefGoogle Scholar
  3. 3.
    N. Del Buono, L. Lopez, in Computational science—ICCS 2003. Part II, Vol. 2658 of Lecture Notes in Comput. Sci. (Springer, Berlin, 2003), p. 111Google Scholar
  4. 4.
    F. Diele, I. Moret, S. Ragni, SIAM J. Matrix Anal. Appl. 30, 1546 (2008/09)MathSciNetCrossRefGoogle Scholar
  5. 5.
    K. Diethelm, The analysis of fractional differential equations, Vol. 2004, Lecture Notes in Mathematics (Springer-Verlag, Berlin, 2010)Google Scholar
  6. 6.
    K. Diethelm, N.J. Ford, A.D. Freed, Nonlinear Dynam. 29, 3 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    K. Diethelm, N.J. Ford, A.D. Freed, Numer. Algorithms 36, 31 (2004)MathSciNetADSCrossRefzbMATHGoogle Scholar
  8. 8.
    J. Dixon, BIT 25, 624 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    V. Gafiychuk, B. Datsko, Comput. Math. Appl. 59, 1101 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    L. Galeone, R. Garrappa, Mediterr. J. Math. 3, 565 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    L. Galeone, R. Garrappa, Math. Comput. Simulation 79, 1358 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    R. Garra, Phys. Rev. E 84, 036605 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    R. Garrappa, J. Comput. Appl. Math. 229, 392 (2009)MathSciNetADSCrossRefzbMATHGoogle Scholar
  14. 14.
    R. Garrappa, Int. J. Bifurcat. Chaos 22, 1250073 (2012)MathSciNetCrossRefGoogle Scholar
  15. 15.
    R. Garrappa, Comput. Math. Appl. 66, 717 (2013)MathSciNetCrossRefGoogle Scholar
  16. 16.
    R. Garrappa, M. Popolizio, J. Comput. Appl. Math. 235, 1085 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    R. Garrappa, M. Popolizio, Math. Comput. Simulation 81, 1045 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    R. Garrappa, M. Popolizio, Adv. Comput. Math. 39, 205 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    N.J. Higham, Functions of matrices (Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2008)Google Scholar
  20. 20.
    M. Hochbruck, C. Lubich, SIAM J. Numer. Anal. 34, 1911 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    M. Hochbruck, A. Ostermann, Acta Numer. 19, 209 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    W. Hundsdorfer, J. Verwer, Numerical solution of time-dependent advection-diffusion-reaction equations, Vol. 33 of Springer Series in Computational Mathematics (Springer-Verlag, Berlin, 2003)Google Scholar
  23. 23.
    A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and applications of fractional differential equations, Vol. 204, North-Holland Mathematics Studies (Elsevier Science B.V., Amsterdam, 2006)Google Scholar
  24. 24.
    R.J. LeVeque, Finite difference methods for ordinary and partial differential equations (Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2007)Google Scholar
  25. 25.
    C. Li, F. Zeng, Numer. Funct. Anal. Optimiz. 34, 149 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    L. Lopez, V. Simoncini, SIAM J. Numer. Anal. 44, 613 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    C. Lubich, Math. Comp. 41, 87 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    C. Lubich, SIAM J. Math. Anal. 17, 704 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    F. Mainardi, Chaos Solitons Fractals 7, 1461 (1996)MathSciNetADSCrossRefzbMATHGoogle Scholar
  30. 30.
    F. Mainardi, in Fractals and fractional calculus in continuum mechanics (Udine, 1996), Vol. 378, CISM Courses and Lectures, (Springer, 1997), p. 291Google Scholar
  31. 31.
    F. Mainardi, Fractional calculus and waves in linear viscoelasticity (Imperial College Press, London, 2010)Google Scholar
  32. 32.
    B.V. Minchev, W.M. Wright, A review of exponential integrators for first order semi-linear problems. Technical Report 2/2005, Norwegian University of Science and Technology, Trondheim, Norway, 2005Google Scholar
  33. 33.
    C. Moler, C. Van Loan, SIAM Rev. 45, 3 (2003)MathSciNetADSCrossRefzbMATHGoogle Scholar
  34. 34.
    I. Moret, Numer. Func. Anal. Opt. 34, 539 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    I. Moret, P. Novati, BIT 44, 595 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    I. Moret, P. Novati, SIAM J. Numer. Anal. 49, 2144 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    I. Moret, M. Popolizio, Numerical Linear Algebra with Applications (2012), doi:  10.1002/nla.1862
  38. 38.
    I. Podlubny, Fractional differential equations, Vol. 198, Mathematics in Science and Engineering (Academic Press Inc., San Diego, CA, 1999)Google Scholar
  39. 39.
    M. Popolizio, V. Simoncini, SIAM J. Matrix Anal. Appl. 30, 657 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    W.R. Schneider, Exposition. Math. 14, 3 (1996)MathSciNetzbMATHGoogle Scholar
  41. 41.
    W.R. Schneider, W. Wyss, J. Math. Phys. 30, 134 (1989)MathSciNetADSCrossRefzbMATHGoogle Scholar
  42. 42.
    J.A.C. Weideman, L.N. Trefethen, Math. Comp. 76, 1341 (2007)MathSciNetADSCrossRefzbMATHGoogle Scholar
  43. 43.
    P. Zhuang, F. Liu, J. Appl. Math. Comput. 22, 87 (2006)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  1. 1.Dipartimento di MatematicaUniversità degli Studi di BariBariItaly

Personalised recommendations