The European Physical Journal Special Topics

, Volume 222, Issue 8, pp 1847–1856 | Cite as

Fractional Fokker-Planck equation for anomalous diffusion in a potential: Exact matrix continued fraction solutions

Regular Article

Abstract

Methods for the exact solution of fractional Fokker-Planck equations for anomalous diffusion in an external potential are discussed using both ordinary and matrix continued fractions, whereby the scalar multi-term recurrence relations generated by such fractional diffusion equations are reduced to three-term matrix ones. The procedure is illustrated by solving various problems concerning the anomalous translational diffusion in both periodic and double-well potentials.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Risken, The Fokker-Planck Equation, 2nd edn. (Springer-Verlag, Berlin, 1989)Google Scholar
  2. 2.
    R. Mazo, Brownian Motion: Fluctuations, Dynamics and Applications (Oxford University Press, Oxford, 2002)Google Scholar
  3. 3.
    A. Einstein, in Investigations on the Theory of the Brownian Movement, edited by R.H. Fürth (Methuen, London, 1926)Google Scholar
  4. 4.
    R. Hilfer, L. Anton, Phys. Rev. E 51, R848 (1995)ADSCrossRefGoogle Scholar
  5. 5.
    R. Metzler, J. Klafter, Phys. Rep. 339, 1 (2000)MathSciNetADSCrossRefMATHGoogle Scholar
  6. 6.
    R. Metzler, J. Klafter, Adv. Chem. Phys. 116, 223 (2001)CrossRefGoogle Scholar
  7. 7.
    B.J. West, M. Bologna, P. Grigolini, Physics of Fractal Operators (Springer, New York, 2003)Google Scholar
  8. 8.
    E.W. Montroll, M.F. Shlesinger, On the Wonderful World of Random Walks, edited by J.L. Lebowitz and E.W. Montroll, in Non-Equilibrium Phenomena II from Stochastics to Hydrodynamics (Elsevier Science Publishers, Amsterdam, 1984)Google Scholar
  9. 9.
    E.W. Montroll, G.H. Weiss, J. Math. Phys. 6, 167 (1965)MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    W. Paul, J. Baschnagel, Stochastic Processes from Physics to Finance (Springer Verlag, Berlin, 1999)Google Scholar
  11. 11.
    W.T. Coffey, Yu.P. Kalmykov, J.T. Waldron, Physica A 208, 462 (1994)ADSCrossRefGoogle Scholar
  12. 12.
    W.T. Coffey, Yu.P. Kalmykov, The Langevin Equation, 3nd ed. (World Scientific, Singapore, 2012), Chapter 12Google Scholar
  13. 13.
    H.S. Wall, Analytic Theory of Continued Fractions (Chelsea, New York, 1973)Google Scholar
  14. 14.
    W.B. Jones, W.J. Thorn, Continued Fractions, Encyclopedia of Mathematics and its Applications, Vol. 11, edited by G.-C. Rota (Addison-Wesley, Reading, MA, USA, 1980)Google Scholar
  15. 15.
    L. Lorentzen, H. Waadeland, Continued Fractions with Applications (North Holland, Amsterdam, 1992)Google Scholar
  16. 16.
    A. Cuyt, V.B. Petersen, B. Verdonk, H. Waadel, W.B. Jones, Handbook of Continued Fractions for Special Functions (Springer, Berlin, 2008)Google Scholar
  17. 17.
    H. Denk, M. Riederle, J. Approx. Theory 35, 355 (1982)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    W. Dieterich, P. Fulde, I. Peschel, Adv. Phys. 29, 527 (1980)ADSCrossRefGoogle Scholar
  19. 19.
    P. Fulde, L. Pietronero, W.R. Schneider, S. Strässer, Phys. Rev. Lett. 35, 1776 (1975)ADSCrossRefGoogle Scholar
  20. 20.
    C.J. Reid, Mol. Phys. 49, 331 (1983)ADSCrossRefGoogle Scholar
  21. 21.
    F. Marchesoni, Phys. Rev. B 32, 1827 (1985)ADSCrossRefGoogle Scholar
  22. 22.
    F. Marchesoni, J.K. Vij, Z. Phys. B 58, 187 (1985)ADSCrossRefGoogle Scholar
  23. 23.
    B. Cartling, J. Chem. Phys. 90, 1819 (1989)ADSCrossRefGoogle Scholar
  24. 24.
    H. Gang, A. Daffertshofer, H. Haken, Phys. Rev. Lett. 76, 4874 (1996)MathSciNetADSCrossRefMATHGoogle Scholar
  25. 25.
    R. Ferrando, R. Spadacini, G.E. Tommei, Phys. Rev. E 48, 2437 (1993)ADSCrossRefGoogle Scholar
  26. 26.
    W.T. Coffey, Yu.P. Kalmykov, S.V. Titov, B.P. Mulligan, Phys. Rev. E 73, 061101 (2006)ADSCrossRefGoogle Scholar
  27. 27.
    W.L. Reenbohn, M.C. Mahato, J. Stat. Mech.: Theor. Exp., P03011 (2009)Google Scholar
  28. 28.
    J.-D. Bao, Y. Zhou, K. Lü, Phys. Rev. E 74, 041125 (2006)ADSCrossRefGoogle Scholar
  29. 29.
    E. Heinsalu, M. Patriarca, I. Goychuk, P. Hänggi, J. Phys.: Condens. Matter 19, 065114 (2007)ADSCrossRefGoogle Scholar
  30. 30.
    Y.-M. Kang, J. Jiang, Y. Xie, J. Phys. A: Math. Theor. 44, 035002 (2011)MathSciNetADSCrossRefGoogle Scholar
  31. 31.
    Yu.P. Kalmykov, S.V. Titov, W.T. Coffey, Phys. Rev. E 85, 041101 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    M. Abramowitz, I. Stegun, Handbook of Mathematical Functions (Dover, New York, 1964)Google Scholar
  33. 33.
    Yu.P. Kalmykov, W.T. Coffey, S.V. Titov, Phys. Rev. E, 74, 011105 (2006)ADSCrossRefGoogle Scholar
  34. 34.
    F. So, K.L. Liu, Physica A 331, 378 (2004)MathSciNetADSCrossRefGoogle Scholar
  35. 35.
    C.W. Chow, K.L. Liu, Physica A 341, 87 (2004)MathSciNetADSCrossRefGoogle Scholar
  36. 36.
    Y.M. Kang, Y.L. Jiang, Phys. Rev. E 81, 021109 (2010)MathSciNetADSCrossRefGoogle Scholar
  37. 37.
    W.T. Coffey, Yu.P. Kalmykov, S.V. Titov, Adv. Chem. Phys. 133B, 285 (2006)CrossRefGoogle Scholar
  38. 38.
    R. Metzler, Phys. Rev. E 62, 6233 (2000)MathSciNetADSCrossRefGoogle Scholar
  39. 39.
    R. Metzler, J. Klafter, J. Phys. Chem. B 104, 3851 (2000)CrossRefGoogle Scholar
  40. 40.
    E. Barkai, R.S. Silbey, J. Phys. Chem. B 104, 3866 (2000)CrossRefGoogle Scholar
  41. 41.
    W.T. Coffey, Yu.P. Kalmykov, S.V. Titov, Phys. Rev. E 67, 061115 (2003)ADSCrossRefGoogle Scholar
  42. 42.
    J. Voit, The Statistical Mechanics of Financial Markets, 2nd edn. (Springer-Verlag, Berlin, 2003)Google Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  1. 1.Department of Electronic and Electrical EngineeringTrinity CollegeDublin 2Ireland
  2. 2.Laboratoire de Mathmatiques et de PhysiqueUniv. Perpignan, via DomitiaPerpignanFrance
  3. 3.Kotelnikov Institute of Radio Engineering and Electronics of the Russian Academy of SciencesFryazino, Moscow RegionRussia

Personalised recommendations