The European Physical Journal Special Topics

, Volume 222, Issue 7, pp 1733–1743 | Cite as

Energy harvesting based on piezoelectric Ericsson cycles in a piezoceramic material

  • B. Zhang
  • B. Ducharne
  • D. Guyomar
  • G. Sebald
Regular Article


The possibility of recycling ambient energies with electric generators instead of using batteries with limited life spans has stimulated important research efforts over the past years. The integration of such generators into mainly autonomous low-power systems, for various industrial or domestic applications is envisioned. In particular, the present work deals with energy harvesting from mechanical vibrations. It is shown here that direct piezoelectric energy harvesting (short circuiting on an adapted resistance, for example) leads to relatively weak energy levels that are insufficient for an industrial development.

By coupling an electric field and mechanical excitation on Ericsson-based cycles, the amplitude of the harvested energy can be highly increased, and can reach a maximum close to 100 times its initial value. To obtain such a gain, one needs to employ high electrical field levels (high amplitude, high frequency), which induce a non-linearity through the piezoceramic. A special dynamic hysteresis model has been developed to correctly take into account the material properties, and to provide a real estimation of the harvested energy. A large number of theoretical predictions and experimental results have been compared and are discussed herein, in order to validate the proposed solution.


European Physical Journal Special Topic Fractional Derivation Mechanical Excitation Tune Mass Damper Loop Area 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H.A. Sodano, D.J. Inman, Shock Vib. Dig. 36, 197 (2004)CrossRefGoogle Scholar
  2. 2.
    L. Collins, IEEE Power Eng. 20, 34 (2006)Google Scholar
  3. 3.
    G. Park, T. Rosing, M.D. Todd, C.R. Farrar, W. Hodgkiss, ASCE J. Infrastruct. Syst. 14, 64 (2008)CrossRefGoogle Scholar
  4. 4.
    X. Tang, L. Zuo, “Towards MESO and macro scale energy harvesting of vibration” Proc. 2009 ASME Int. Mechanical Engineering Congress and Exposition (Florida, 2009)Google Scholar
  5. 5.
    J. Paradiso, T. Starner, IEEE Pervasive Comput. 4, 18 (2009)CrossRefGoogle Scholar
  6. 6.
    Y. Kawamoto, Y. Suda, H. Inoue, T. Kondo, Veh. Syst. Dyn. 46, 1053 (2008)CrossRefGoogle Scholar
  7. 7.
    L. Zuo, B. Scully, J. Shetani, Y. Zhou, Smart Mater. Struct. 19, 045003 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    J.T. Scruggs, W.D. Iwan, Struct. Control. Health. Monit. 50, 25 (2005)CrossRefGoogle Scholar
  9. 9.
    T. Ni, L. Zuo, A. Kareem, “Assessment of energy potential and vibration mitigation of regenerative tuned mass dampers on wind excited tall buildings”, ASME Design Engineering Technical Conf., Washington DC, 28–31 Aug., 2011Google Scholar
  10. 10.
    X. Tang, L. Zuo, “Self-powered active control of structures with TMDs”, IMAC XXVIII Conf. and Exposition on Structural Dynamics: Structural Dynamics and Renewable Energy (Florida, 2010)Google Scholar
  11. 11.
    X. Tang, L. Zuo, “Regenerative semi-active control of tall building vibration with series TMDs”, Proc. America Control Conf., Baltimore, MD, June 30–July 2, 2010Google Scholar
  12. 12.
    E. Lefeuvre, G. Sebald, D. Guyomar, M. Lallart, C. Richard, J. Electroceram. 22, 171 (2009)CrossRefGoogle Scholar
  13. 13.
    D. Guyomar, Y. Jayet, L. Petit, E. Lefeuvre, T. Monnier, C. Richard, M. Lallart, Sens. Actuators A: Phys. 138, 151 (2007)CrossRefGoogle Scholar
  14. 14.
    J.A. Paradiso, T. Starner, IEEE Pervasive Comput. 4, 18 (2005)CrossRefGoogle Scholar
  15. 15.
    P. Glynne-Jones, S.P. Beeby, N.M. White, IEE Proc. Sci. Meas. Technol. 148, 68 (2001)CrossRefGoogle Scholar
  16. 16.
    G. Sebald, H. Kuwano, D. Guyomar, B. Ducharne, Smart Mat. Struct. 20, 102001 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    T.W. Ma, Proc. Institution Mech. Engineers part I – J. Syst. Control Eng. 225, 467 (2011)Google Scholar
  18. 18.
    R. Ramlan, M.J. Brennan, B.R. Mace, S.G. Burrow, J. Intell. Material Syst. Struct. 23, 1423 (2012)CrossRefGoogle Scholar
  19. 19.
    B. Ducharne, D. Guyomar, G. Sebald, J. Phys. D: Appl. Phys. 40, 551 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    D. Guyomar, B. Ducharne, G. Sebald, IEEE Trans. Ultrason. Ferrelectr. Freq. Control 56, 437 (2009)CrossRefGoogle Scholar
  21. 21.
    D. Guyomar, B. Ducharne, G. Sebald, J. Phys. D: Appl. Phys. 41, 125410 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    D. Guyomar, B. Ducharne, G. Sebald, J. Appl. Phys. 107, 114108 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    D. Guyomar, B. Ducharne, G. Sebald, J. Phys. D: Appl. Phys. 40, 6048 (2007)ADSCrossRefGoogle Scholar
  24. 24.
    D. Guyomar, B. Ducharne, G. Sebald, Smart Mater. Struct. 19, 045010 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    F. Cottone, H. Vocca, L. Gammaitoni, Phys. Rev. Lett. 102, 080601 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    G. Litak, M.I. Friswell, S. Adhikari, Appl. Phys. Lett. 96, 214103 (2010)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  • B. Zhang
    • 1
  • B. Ducharne
    • 1
  • D. Guyomar
    • 1
  • G. Sebald
    • 1
  1. 1.Laboratoire de Génie Electrique et Ferroélectricité – INSA de Lyon, Bât. Gustave FerrieVilleurbanne CedexFrance

Personalised recommendations