The European Physical Journal Special Topics

, Volume 222, Issue 7, pp 1541–1551 | Cite as

Adaptive fuzzy sliding mode control of smart structures

  • W.M. BessaEmail author
  • A.S. de PaulaEmail author
  • M.A. SaviEmail author
Regular Article


Smart structures are usually designed with a stimulus-response mechanism to mimic the autoregulatory process of living systems. In this work, in order to simulate this natural and self-adjustable behavior, an adaptive fuzzy sliding mode controller is applied to a shape memory two-bar truss. This structural system exhibits both constitutive and geometrical nonlinearities presenting the snap-through behavior and chaotic dynamics. On this basis, a variable structure controller is employed for vibration suppression in the chaotic smart truss. The control scheme is primarily based on sliding mode methodology and enhanced by an adaptive fuzzy inference system to cope with modeling inaccuracies and external disturbances. The robustness of this approach against both structured and unstructured uncertainties enables the adoption of simple constitutive models for control purposes. The overall control system performance is evaluated by means of numerical simulations, promoting vibration reduction and avoiding snap-through behavior.


Shape Memory Shape Memory Alloy European Physical Journal Special Topic Energy Harvest Smart Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Otsuka, X. Ren, Intermet. 7, 511 (1999)CrossRefGoogle Scholar
  2. 2.
    D.C. Lagoudas, Shape Memory Alloys: Modeling and Engineering Applications (Springer-Verlag, New York, 2008)Google Scholar
  3. 3.
    A. Paiva, M.A. Savi, Math. Probl. Eng. 2006, 56876 (2006)CrossRefMathSciNetGoogle Scholar
  4. 4.
    L.G. Machado, M.A. Savi, Braz. J. Med. Biol. Res. 36, 683 (2003)Google Scholar
  5. 5.
    C.A. Rogers, Sci. Am. 273, 154 (1995)CrossRefGoogle Scholar
  6. 6.
    J.A. Shaw, S. Kyriakides, J. Mech. Phys. Solids 43, 1243 (1995)CrossRefADSGoogle Scholar
  7. 7.
    F. Auricchio, R.L. Taylor, in Proceedings SPIE Vol. 2779, 3rd International Conference on Intelligent Materials and 3rd European Conference on Smart Structures and Materials, Lyon, 1996, edited by P.F. Gobin, J. Tatibouet (SPIE, 1996), p. 487Google Scholar
  8. 8.
    D.C. Lagoudas, D. Moorthy, M.A. Qidwai, J.N. Reddy, J. Intell. Mater. Syst. Struct. 8, 476 (1997)CrossRefGoogle Scholar
  9. 9.
    C.A.P.L. La Cava, M.A. Savi, P.M.C.L. Pacheco, Smart Mater. Struct. 13, 1118 (2004)CrossRefADSGoogle Scholar
  10. 10.
    E.L. Bandeira, M.A. Savi, P.C.C. Monteiro Jr., T.A. Netto, Arch. Appl. Mech. 76, 133 (2006)CrossRefzbMATHADSGoogle Scholar
  11. 11.
    M. Collet, E. Foltête, C. Lexcellent, Eur. J. Mech. A – Solids 20, 615 (2001)CrossRefzbMATHADSGoogle Scholar
  12. 12.
    F. Auricchio, E. Sacco, Comput. Methods Appl. Mech. Eng. 174, 171 (1999)CrossRefzbMATHADSGoogle Scholar
  13. 13.
    F. Auricchio, L. Petrini, Int. J. Numer. Methods Eng. 61, 716 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    F. Auricchio, L. Petrini, Int. J. Numer. Methods Eng. 61, 807 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    F. Trochu, N. Sacépé, O. Volkov, S. Turenne, Mater. Sci. Eng. A 273–275, 395 (1999)CrossRefGoogle Scholar
  16. 16.
    A. Masud, M. Panahandeh, F. Aurrichio, Comput. Methods Appl. Mech. Eng. 148, 23 (1997)CrossRefzbMATHADSGoogle Scholar
  17. 17.
    A. Bhattacharyya, M.G. Faulkner, J. J. Amalraj, Comput. Mater. Sci. 17, 93 (2000)CrossRefGoogle Scholar
  18. 18.
    K. Liew, S. Kitipornchai, T.Y. Ng, G.P. Zou Eng. Struct. 24, 51 (2002)CrossRefGoogle Scholar
  19. 19.
    Z.P. Bazant, L. Cedolin, Stability of Structures: Elastic, Inelastic, Fracture, and Damage Theories (World Scientific Publishing Company, Singapore, 2010)Google Scholar
  20. 20.
    M.A. Savi, J.B. Nogueira, Smart Mater. Struct. 19, 1150222010 (2010)CrossRefGoogle Scholar
  21. 21.
    M.A. Savi, P.M.C.L. Pacheco, A.M.B. Braga, Int. J. Non-Linear Mech. 37, 1387 (2002)CrossRefzbMATHGoogle Scholar
  22. 22.
    W.M. Bessa, R.S.S. Barrêto, Control. Autom 21, 117 (2010)Google Scholar
  23. 23.
    F. Falk, Acta Metall. 28, 1773 (1980)CrossRefGoogle Scholar
  24. 24.
    I. Muller, Acta Metall. Mater. 39, 263 (1991)CrossRefGoogle Scholar
  25. 25.
    M.A. Savi, A.M.B. Braga, J. Braz. Soc. Mech. Sci. Eng. 15, 1 (1993)Google Scholar
  26. 26.
    W.M. Bessa, M.S. Dutra, E. Kreuzer, Robot. Auton. Syst. 56, 670 (2008)CrossRefGoogle Scholar
  27. 27.
    W.M. Bessa, M.S. Dutra, E. Kreuzer, Robot. Auton. Syst. 58, 16 (2010)CrossRefGoogle Scholar
  28. 28.
    W.M. Bessa, M.S. Dutra, E. Kreuzer, J. Intell. Robot. Syst. 58, 3 (2010)CrossRefzbMATHGoogle Scholar
  29. 29.
    W.M. Bessa, A.S. De Paula, M.A. Savi, Chaos Solitons Fractals 42, 784 (2009)CrossRefzbMATHADSGoogle Scholar
  30. 30.
    W.M. Bessa, A.S. De Paula, M.A. Savi, Nonlinear Dyn. 70, 1989 (2012)CrossRefMathSciNetGoogle Scholar
  31. 31.
    B. Kosko, IEEE Trans. Comput. 43, 1329 (1994)CrossRefzbMATHGoogle Scholar
  32. 32.
    J.-S.R. Jang, C.-T. Sun, E. Mizutani, Neuro Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence (Prentice Hall, New Jersey, 1997)Google Scholar
  33. 33.
    P. Sittner, Y. Hara, M. Tokuda, Metall. Mater. Trans. A 16A, 2923 (1995)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  1. 1.Universidade Federal do Rio Grande do Norte, Departamento de Engenharia Mecânica, Campus Universitário Lagoa NovaNatalBrazil
  2. 2.Universidade de Brasília, Departamento de Engenharia MecânicaBrasíliaBrazil
  3. 3.Universidade Federal do Rio de Janeiro, Departamento de Engenharia MecânicaRio de JaneiroBrazil

Personalised recommendations