The European Physical Journal Special Topics

, Volume 222, Issue 7, pp 1519–1539 | Cite as

Dynamics of an axially functionally graded beam under axial load

  • E. BabilioEmail author
Regular Article


This paper considers the dynamics of a simply supported beam under axial time–dependent load. The beam is made of an axially functionally graded material. The motion equations are deduced from the equilibrium in deformed configuration and no restriction is made on the amplitude of the transversal displacement, but that naturally imposed by the inextensibility assumption that is adopted in the present study. The transversal motion equation, that is a partial differential equation, is approximated by its Taylor expansion until third order and then discretized through the Galerkin procedure.


Axial Force Critical Load European Physical Journal Special Topic Bifurcation Diagram Energy Harvest 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Koizumi, Compos. Part B 28, 1 (1997)CrossRefGoogle Scholar
  2. 2.
    M. Aydogdu, V. Taskin, Mater. Design 28, 1651 (2007)CrossRefGoogle Scholar
  3. 3.
    Z. Zhong, T. Yu, Compos. Sci. Technol. 67, 481 (2007)CrossRefGoogle Scholar
  4. 4.
    S. Kapuria, M. Bhattacharya, A.N. Kumar, Compos. Struct. 82, 390 (2008)CrossRefGoogle Scholar
  5. 5.
    X.–F. Li, J. Sound Vib. 318, 1210 (2008)CrossRefADSGoogle Scholar
  6. 6.
    S.A. Sina, H.M. Navazi, H. Haddadpour, Mater. Design 30, 741 (2009)CrossRefGoogle Scholar
  7. 7.
    M. Şimşek, Int. J. Eng. Appl. Sci. 1, 1 (2009)Google Scholar
  8. 8.
    M. Şimşek, Nucl. Eng. Des. 240, 697 (2010)CrossRefGoogle Scholar
  9. 9.
    A. Fallah, M.M. Aghdam, Eur. J. Mech. A–Solid. 30, 571 (2011)CrossRefzbMATHADSGoogle Scholar
  10. 10.
    I. Elishakoff, Eigenvalues of Inhomogeneous Structures: Uunusual Closed-form Solutions (CRC Press, Boca Raton, 2005)Google Scholar
  11. 11.
    X.–F. Li, Y.–A. Kang, J.–X. Wu, Appl. Acoust. 74, 413 (2013)CrossRefGoogle Scholar
  12. 12.
    S. Candan, I. Elishakoff, Int. J. Solids Struct. 38, 3411 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    I. Elishakoff, S. Candan, J. Appl. Mech.–T. ASME 68, 176 (2001)CrossRefzbMATHGoogle Scholar
  14. 14.
    I. Elishakoff, Arch. Appl. Mech. 82, 1355 (2012)CrossRefADSGoogle Scholar
  15. 15.
    L. Wu, Q. Wang, I. Elishakoff, J. Sound Vib. 284, 1190 (2005)CrossRefADSGoogle Scholar
  16. 16.
    Y. Huang, X.–F. Li, J. Sound Vib. 329, 2291 (2010)CrossRefADSGoogle Scholar
  17. 17.
    Y. Huang, X.–F. Li, J. Eng. Mech.–ASCE 137, 73 (2011)CrossRefGoogle Scholar
  18. 18.
    A.E. Alshorbgy, M.A. Eltaher, F.F. Mahmoud, Appl. Math. Model. 35, 412 (2011)CrossRefMathSciNetGoogle Scholar
  19. 19.
    A. Shahba, R. Attarnejad, S. Hajilar, Shock Vib. 18, 683 (2011)CrossRefGoogle Scholar
  20. 20.
    A. Shahba, S. Rajasekaran, Appl. Math. Model. 36, 3094 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    A. Shahba, R. Attarnejad, M.T. Marvi, S. Hajilar, Compos. Part B 42, 801 (2011)CrossRefGoogle Scholar
  22. 22.
    R. Bellman, J. Casti, J. Math. Anal. Appl. 34, 235 (1971)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    M.A. De Rosa, C. Franciosi, Mech. Res. Commun. 25, 279 (1998)CrossRefzbMATHGoogle Scholar
  24. 24.
    D. Çetin, M. Şimşek, Struct. Eng. Mech. 40, 583 (2011)CrossRefGoogle Scholar
  25. 25.
    M. Şimşek, T. Kocatürk, Ş.D. Akbaş, Dynamics of an axially functionally graded beam carrying a moving harmonic load, in: 16th International conference on composite structures (Porto, Portugal, 2011)Google Scholar
  26. 26.
    M. Şimşek, T. Kocatürk, Ş.D. Akbaş, Compos. Struct. 94, 2358 (2012)CrossRefGoogle Scholar
  27. 27.
    M. Koizumi, Ceram. T. Funct. Grade Mater. 34, 3 (1993)Google Scholar
  28. 28.
    V. Birman, L.W. Byrd, Appl. Mech. Rev. 60, 195 (2007)CrossRefADSGoogle Scholar
  29. 29.
    A. Nikkhoo, M. Amankhani, Indian J. Sci. Tech. 5, 3727 (2012)Google Scholar
  30. 30.
    J. Murín, J. Hrabovský, J. Paulech, V. Kutiš, F. Janíček, J. Electr. Eng. 63, 164 (2012)Google Scholar
  31. 31.
    L. Librescu, K.Y. Maalawi, J. Mech. Mater. Struct. 2, 1381 (2007)CrossRefGoogle Scholar
  32. 32.
    W.T. Koiter, On the stability of elastic equilibrium, (Dissertation, Delft, Holland, 1945), English translation, (a) NASA, TT, F–10, 833 (1967); (b) AFFDL–TR–70–25 (1970)Google Scholar
  33. 33.
    A.H. Nayfeh, D.T. Mook, Nonlinear Oscillations (Wiley, New York, 1995)Google Scholar
  34. 34.
    J.H. Argyris, H.–P. Mlejnek, Dynamics of Structures (North–Holland, Amsterdam, 1991)Google Scholar
  35. 35.
    A.H. Nayfeh, P.F. Pai, Linear and Nonlinear Structural Mechanics (John Wiley & Sons, Weinheim, 2004)Google Scholar
  36. 36.
    W. Lacarbonara, H. Yabuno, Int. J. Solids Struct. 43, 5066 (2006)CrossRefzbMATHGoogle Scholar
  37. 37.
    S. Stoykov, P. Ribeiro, Finite Elem. Anal. Des. 65, 76 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  38. 38.
    M.R.M. Crespo da Silva, C.C. Glynn, J. Struct. Mech. 6, 437 (1978)CrossRefGoogle Scholar
  39. 39.
    M.R.M. Crespo da Silva, C.C. Glynn, J. Struct. Mech. 6, 449 (1978)CrossRefGoogle Scholar
  40. 40.
    E.L. Reiss, Column buckling – an elementary example of bifurcation, in: Bifurcation theory an nonlinear eigenvalue problems, edited by J. Keller, S.S. Antman (W.A. Benjamin, New York, 1969), p. 1Google Scholar
  41. 41.
    S.P.M. Noijen, N.J. Mallon, R.H.B. Fey, H. Nijmeijer, G.Q. Zhang, Nonlinear Dynam. 50, 325 (2007)CrossRefzbMATHGoogle Scholar
  42. 42.
    M. Tabaddor, Int. J. Solids Struct. 37, 4915 (2000)CrossRefzbMATHGoogle Scholar
  43. 43.
    E.J. Sapountzakis, V.J. Tsipiras, Nonlinear nonuniform torsional vibrations of shear deformable bars – application to torsional postbuckling configurations and primary resonance excitations, in: Recent Developments in Boundary Element Methods, A volume to honour John T. Katsikadelis, edited by E.J. Sapountzakis, WIT Press (Southampton, UK, 2010), p. 171Google Scholar
  44. 44.
    S. Neukirch, J. Frelat, A. Goriely, C. Maurini J. Sound Vib. 331, 704 (2012)CrossRefADSGoogle Scholar
  45. 45.
    M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables (NBS Applied Mathematics Series 55, National Bureau of Standards, Washington, DC, 1964)Google Scholar
  46. 46.
    S. Wolfram, The Mathematica Book, 5th edn. (Wolfram Media/Cambridge University Press, 2003)Google Scholar
  47. 47.
    J.E. Marsden, T.J.R. Hughes, Mathematical Foundations of Elasticity (Dover, New York, 1983)Google Scholar
  48. 48.
    S.S. Antman, Nonlinear Problems of Elasticity, 2nd edn. (Springer–Verlag, New York, 2000)Google Scholar
  49. 49.
    M. Eisenberger, Int. J. Solids Struct. 27, 135 (1991)CrossRefGoogle Scholar
  50. 50.
    M.A. De Rosa, C. Franciosi, J. Sound Vib. 191 795 (1996)CrossRefADSGoogle Scholar
  51. 51.
    K.V. Singh, G.Q. Li, Compos. Part B 40, 393 (2009)CrossRefGoogle Scholar
  52. 52.
    I. Elishakoff, Int. J. Solids Struct. 38, 457 (2001)CrossRefzbMATHGoogle Scholar
  53. 53.
    S. Lenci, G. Rega, Int. J. Nonlin. Mech. 46, 1232 (2011)CrossRefGoogle Scholar
  54. 54.
    S. Lenci, G. Rega, Int. J. Nonlin. Mech. 46, 1240 (2011)CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  1. 1.Department of Structures for Engineering and Architecture (DiSt)University of Naples “Federico II”NaplesItaly

Personalised recommendations