The European Physical Journal Special Topics

, Volume 222, Issue 7, pp 1483–1501 | Cite as

Nonlinear dynamics of galloping-based piezoaeroelastic energy harvesters

Regular Article

Abstract

The normal form is proposed as a tool to analyze the performance and reliability of galloping-based piezoaeroelastic energy harvesters. Two different harvesting systems are considered. The first system consists of a tip mass prismatic structure (isosceles 30° or square cross-section geometry) attached to a multilayered cantilever beam. The only source of nonlinearity in this system is the aerodynamic nonlinearity. The second system consists of an equilateral triangle cross-section bar attached to two cantilever beams. This system is designed to have structural and aerodynamic nonlinearities. The coupled governing equations for the structure’s transverse displacement and the generated voltage are derived and analyzed for both systems. The effects of the electrical load resistance and the type of harvester on the onset speed of galloping are quantified. The results show that the onset speed of galloping is strongly affected by the load resistance for both types of harvesters. The normal form of the dynamic system near the onset of galloping (Hopf bifurcation) is then derived. Based on the nonlinear normal form, it is demonstrated that smaller levels of generated voltage or power are obtained for higher absolute values of the effective nonlinearity. For the first harvesting system, the results show a supercritical Hopf bifurcation for both isosceles 30° or square cross-section geometries. The nonlinear normal form shows that the isosceles triangle section (30°) is more efficient than the square section. For the second harvesting system, the normal form is used to identify the values of the nonlinear torsional spring which changes the harvester’s instability. It is demonstrated that this critical value of the nonlinear torsional spring depends strongly on the load resistance.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Erturk, W.G.R. Vieira, C. De Marqui, D.J. Inman, Appl. Phys. Lett. 96, 184103 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    C. De Marqui, A. Erturk, D.J. Inman, J. Int. Mat. Syst. Struct. 21, 983 (2010)CrossRefGoogle Scholar
  3. 3.
    H.D. Akaydin, N. Elvin, Y. Andrepoulos, J. Int. Mat. Syst. Struct. 21, 1263 (2010)CrossRefGoogle Scholar
  4. 4.
    A. Abdelkefi, A.H. Nayfeh, M.R. Hajj, Nonlinear Dyn. 67, 925 (2012)CrossRefMathSciNetGoogle Scholar
  5. 5.
    A. Abdelkefi, A.H. Nayfeh, M.R. Hajj, Nonlinear Dyn. 68, 519 (2012)CrossRefGoogle Scholar
  6. 6.
    A. Abdelkefi, A.H. Nayfeh, M.R. Hajj, Nonlinear Dyn. 68, 531 (2012)CrossRefGoogle Scholar
  7. 7.
    A. Abdelkefi, M.R. Hajj, A.H. Nayfeh, J. Int. Mat. Syst. Struct. 23, 1523 (2012)CrossRefGoogle Scholar
  8. 8.
    V.C. Sousa, M de M. Anicezio, C. De Marqui, A. Erturk, Smart Mat. Struct. 20, 094007 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    A. Abdelkefi, M.R. Hajj, A.H. Nayfeh, Nonlinear Dyn. 70, 1355 (2012)CrossRefMathSciNetGoogle Scholar
  10. 10.
    A. Abdelkefi, Ph.D. Dissertation, Virginia Tech, 2012Google Scholar
  11. 11.
    J. Sirohi, R. Mahadik, J. Int. Mat. Syst. Struct. 22, 2215 (2011)CrossRefGoogle Scholar
  12. 12.
    A. Abdelkefi, Z. Yan, M.R. Hajj, Smart Mat. Struct. 22, 025016 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    A. Abdelkefi, M.R. Hajj, A.H. Nayfeh, Nonlinear Dyn. 70, 1377 (2012)CrossRefMathSciNetGoogle Scholar
  14. 14.
    A. Abdelkefi, M.R. Hajj, A.H. Nayfeh, Smart Mat. Struct. 22, 015014 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    A. Abdelkefi, Z. Yan, M.R. Hajj, Smart Mat. Struct. 22, 055026 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    J.P. Den Hartog, Mechanical vibrations (McGraw-Hill, New York, 1956)Google Scholar
  17. 17.
    IEEE, Standard on Piezoelectricity IEEE, 1987Google Scholar
  18. 18.
    E. Naudascher, D. Rockwell, Flow-induced vibrations, An engineering guide (Dover Publications, New York, 1994)Google Scholar
  19. 19.
    A. Barrero-Gil, G. Alonso, A. Sanz-Andres, J. Sound Vibr. 329, 2873 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    G. Alonso, J. Meseguer, J. Wind Eng. Ind. Aerodyn. 94, 241 (2007)CrossRefGoogle Scholar
  21. 21.
    G. Alonso, J. Meseguer, I. Prez-Grande, J. Wind Eng. Ind. Aerodyn. 95, 928 (2007)CrossRefGoogle Scholar
  22. 22.
    G.V. Parkinson, J.D. Smith, Quarterly J. Mech. Appl. Math. 17, 225 (1964)CrossRefMATHGoogle Scholar
  23. 23.
    A.H. Nayfeh, B. Balachandran, Applied nonlinear dynamics (Wiley series in nonlinear science, NY, 1994)Google Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  1. 1.Department of Engineering Science and MechanicsMC 0219, Virginia TechBlacksburgUSA

Personalised recommendations